We analyze the projected axial ratio distribution, p(b/a), of galaxies that
were spectroscopically selected from the Sloan Digital Sky Survey (DR6) to have
low star-formation rates. For these quiescent galaxies we find a rather abrupt
change in p(b/a) at a stellar mass of ~10^{11} M_sol: at higher masses there
are hardly any galaxies with b/a<0.6, implying that essentially none of them
have disk-like intrinsic shapes and must be spheroidal. This transition mass is
~3-4 times higher than the threshold mass above which quiescent galaxies
dominate in number over star-forming galaxies, which suggests these mass scales
are unrelated. At masses lower than ~10^{11} M_sol, quiescent galaxies show a
large range in axial ratios, implying a mix of bulge- and disk-dominated
galaxies. Our result strongly suggests that major merging is the most
important, and perhaps only relevant, evolutionary channel to produce massive
(>10^{11} M_sol), quiescent galaxies, as it inevitably results in spheroids.Comment: Minor changes to match published version in ApJ Letter