277 research outputs found

    The Airy fibre: an optical fibre that guides light diffracted by a circular aperture

    Get PDF
    We have designed and made an optical fibre that guides an approximate Airy pattern as one of its guided modes. The fibre's attenuation was 11.0 dB/km at 1550 nm wavelength, the match between the fibre's mode and the ideal infinite Airy pattern was 93.7%, and the far field resembled a top-hat beam. The guidance mechanism has strong similarities to photonic bandgap guidance.Comment: 11 page

    Point defect segregation and its role in the detrimental nature of Frank partials in Cu(In,Ga)Se2 thin-film absorbers

    Get PDF
    The interaction of point defects with extrinsic Frank loops in the photovoltaic absorber material Cu(In,Ga)Se₂ was studied by aberration-corrected scanning transmission electron microscopy in combination with electron energy-loss spectroscopy and calculations based on density-functional theory. We find that Cu accumulation occurs outside of the dislocation cores bounding the stacking fault due to strain-induced preferential formation of Cu‾²In, which can be considered a harmful hole trap in Cu(In,Ga)Se₂. In the core region of the cation-containing α-core, Cu is found in excess. The calculations reveal that this is because Cu on In-sites is lowering the energy of this dislocation core. Within the Se-containing β-core, in contrast, only a small excess of Cu is observed, which is explained by the fact that Cu¡ⁿ and Cu¡ are the preferred defects inside this core, but their formation energies are positive. The decoration of both cores induces deep defect states, which enhance nonradiative recombination. Thus, the annihilation of Frank loops during the Cu(In,Ga)Se₂ growth is essential in order to obtain absorbers with high conversion efficiencies

    Overcoming Phase Purity Challenges in Complex Metal Oxide Photoelectrodes A Case Study of CuBi2O4

    Get PDF
    The widespread application of solar water splitting for energy conversion depends on the progress of photoelectrodes that uphold stringent criteria from photoabsorber materials. After investigating almost all possible elemental and binary semiconductors, the search must be expanded to complex materials. Yet, high structural control of these materials will become more challenging with an increasing number of elements. Complex metal oxides offer unique advantages as photoabsorbers. However, practical fabrication conditions when using glass based transparent conductive substrates with low thermal stability impedes the use of common synthesis routes of high quality metal oxide thin film photoelectrodes. Nevertheless, rapid thermal processing RTP enables heating at higher temperatures than the thermal stabilities of the substrates, circumventing this bottleneck. Reported here is an approach to overcome phase purity challenges in complex metal oxides, showing the importance of attaining a single phase multinary compound by exploring large growth parameter spaces, achieved by employing a combinatorial approach to study CuBi2O4, a prime candidate photoabsorber. Pure CuBi2O4 photoelectrodes are synthesized after studying the relationship between the crystal structures, synthesis conditions, RTP, and properties over a range of thicknesses. Single phase photoelectrodes exhibit higher fill factors, photoconversion efficiencies, longer carrier lifetimes, and increased stability than nonpure photoelectrodes. These findings show the impact of combinatorial approaches alongside radiative heating techniques toward discovering highly efficient multinary photoabsorber

    Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean

    Get PDF
    Background: Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 Âľm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone. Methodology/Principal Findings: In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated. Conclusions/Significance: Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups

    When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation

    Get PDF
    Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at these two levels. Transcriptome as well as metabolite changes reflected a major investment in two processes: adaptation from fully respiratory to respiro-fermentative metabolism and preparation for growth acceleration. At the metabolite level, a severe drop of the AXP pools directly after glucose addition was not accompanied by any of the other three NXP. To counterbalance this loss, purine biosynthesis and salvage pathways were transcriptionally upregulated in a concerted manner, reflecting a sudden increase of the purine demand. The short-term dynamics of the transcriptome revealed a remarkably fast decrease in the average half-life of downregulated genes. This acceleration of mRNA decay can be interpreted both as an additional nucleotide salvage pathway and an additional level of glucose-induced regulation of gene expression

    Optoelectronic Inactivity of Dislocations in Cu In,Ga Se2 Thin Films

    Get PDF
    High efficiency Cu In,Ga Se2 CIGS thin film solar cells are based on poly crystalline CIGS absorber layers, which contain grain boundaries, stacking faults, and dislocations. While planar defects in CIGS layers have been investigated extensively, little is still known about the impact of dislocations on optoelectronic properties of CIGS absorbers. Herein, evidence for an optoelectronic inactivity of dislocations in these thin films is given, in contrast to the situation at grain boundaries. This unique behavior is explained by the extensive elemental redis tribution detected around dislocation cores, which is connected with the dislocation strain field, probably leading to a shift of defect states toward the band edge

    Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG gefÜrderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.In polycrystalline semiconductor absorbers for thin-film solar cells, structural defects may enhance electron-hole recombination and hence lower the resulting energy conversion efficiency. To be able to efficiently design and optimize fabrication processes that result in high-quality materials, knowledge of the nature of structural defects as well as their formation and annihilation during film growth is essential. Here we show that in co-evaporated Cu(In,Ga)Se-2 absorber films the density of defects is strongly influenced by the reaction path and substrate temperature during film growth. A combination of high-resolution electron microscopy, atomic force microscopy, scanning tunneling microscopy, and X-ray diffraction shows that Cu(In,Ga)Se-2 absorber films deposited at low temperature without a Cu-rich stage suffer from a high density of - partially electronically active - planar defects in the {112} planes. Real-time X-ray diffraction reveals that these faults are nearly completely annihilated during an intermediate Cu-rich process stage with [Cu]/([In] + [Ga]) > 1. Moreover, correlations between real-time diffraction and fluorescence analysis during Cu-Se deposition reveal that rapid defect annihilation starts shortly before the start of segregation of excess Cu-Se at the surface of the Cu(In,Ga)Se-2 film. The presented results hence provide direct insights into the dynamics of the film-quality-improving mechanism

    Acute black tea consumption improves cutaneous vascular function in healthy middle-aged humans.

    Get PDF
    BACKGROUND & AIMS: Dietary flavonoids, such as those present in black tea, are associated with reduced risk of cardiovascular disease (CVD), possibly through improving nitric oxide (NO) mediated vascular function. The aim of this study was to examine the effect of acute black tea ingestion on cutaneous microvascular function. METHODS: Twenty healthy participants (58 ¹ 5 y, 9 men) attended two experimental trials (tea, placebo), 7-days apart in a randomised, controlled, double-blind, cross-over design. Participants ingested a single dose of 200 ml black tea or placebo, followed by assessment of forearm cutaneous perfusion using laser-Doppler flowmetry (LDF) using three distinct heating protocols, enabling us to distinguish between axon- and endothelium-dependent vasodilation: 1. rapid 42°C, 2. rapid 39°C and 3. gradual 42°C. On the contralateral arm, full-field laser perfusion imaging (FLPI) was used to assess forearm perfusion during gradual 42°C. Data were presented as cutaneous vascular conductance (CVC; flux/mean arterial pressure, MAP) and CVC expressed as a percentage of maximal CVC (%CVCmax). RESULTS: Rapid local heating to 39°C or 42°C demonstrated no effect of tea for flux, CVC or %CVCmax (all P > 0.05). Gradual local heating to 42 °C, however, produced a higher skin blood flow following black tea ingestion for absolute CVC (P = 0.04) when measured by LDF, and higher absolute flux (P < 0.001) and CVC (P < 0.001) measured with FLPI. No effect of tea was found for %CVCmax when assessed by either LDF or FLPI. CONCLUSIONS: Acute tea ingestion enhanced cutaneous vascular responses to gradual local heating to 42 °C in healthy, middle-aged participants, possibly through a mechanism related to activation of endothelium-derived chemical mediators, such as NO. These improvements may contribute to the cardiovascular health benefits of regular tea ingestion
    • …
    corecore