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1 INTRODUCTION

Biotechnology to purify air and waste gasses has been applied more frequently in

recent years, because they eliminate many of the drawbacks of classical physical-

chemical techniques (Kennes and Veiga 2001; Shareefdeen and Singh, 2005). The

disadvantages of the traditional air-treatment techniques are high-energy costs

(incinerators), the use of chemicals (chemical scrubbers) and the production of waste

products (incinerators, scrubbers, activated carbon filters). Biological waste gas

purification is a ‘green’ technology that requires only minimal energy inputs and

produces little to no waste. Biological waste gas purification is safe as it is operated at

ambient temperatures without the requirement of storage and handling of chemicals

and is often applied because of its low operational costs.

However, biological waste gas purification is still relatively new in many

application fields. For example, applications of biological waste gas treatment for

high contaminant concentrations are still scare at this moment. The main reason is

that biological treatment systems face operational limitations for the treatment of high

contaminant concentrations as it may lead to biomass clogging inside the biological

treatment system. Biomass clogging will result in poor airflow distribution, high

pressure drop over the system and unstable operation, that eventually will lead to a

reduction of performance. This severely limits the applicability of conventional

biofiltration systems for the treatment of airstreams with high contaminant
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concentrations. Traditional technologies like incineration are commonly used to treat

waste gases with high concentrations of contaminants. This is attractive when the

concentrations are high enough to thermodynamically support burning the contaminants

without additional fuel. If this is not the case, incineration is relatively expensive

because of the additional fuel requirement. The cost of operating an incinerator is

then directly related to the energy prices, which have been increasing significantly

over the last couple of years.

Conventional biofiltration systems can have limitations in terms of process

control, and often higher degradation capacities or smaller footprints are required.

Bioreactors using membranes are of interest for new applications as they have some

important advantages over conventional biofiltration systems. The first advantage is

that any biomass accumulation does not interfere with the gas phase and that biomass

accumulation can be better controlled. Secondly, it eliminates the risk of unintentionally

drying out of the biofilm and ensures a sustainable control of moisture, which is often

a problem in the operation of conventional biofilters. Another advantage is the improved

homogenous airflow distribution as well as better controlled nutrient addition to the

biofilm. Finally, poor water-soluble compounds with high membrane permeability

can be treated effectively with membrane bioreactors as has been demonstrated for

hexane (Reiser, 1994). The membrane separates the gas phase from the liquid phase

holding the biology, which improves the possibilities to control and optimize the

biological process.

This paper describes reactor design considerations of membrane bioreactor for

waste gas treatment. Current limitations and challenges for further development of

applications are discussed including some possible interesting application fields.

2 PROCESS MECHANISM OF A MEMBRANE BIOREACTOR

In a membrane bioreactor for gas treatment, the membrane is the interface between

the contaminated gas phase and a liquid phase containing nutrients. The pollutants

diffuse from the waste gas through the membrane to the biofilm that is attached on the

membrane at the liquid membrane interface. The micro-organisms in the biofilm will

obtain oxygen from the gas phase, while the nutrients are obtained from the liquid

phase. The liquid with the nutrients is usually recirculated, buffered to sustain a suitable

pH and refreshed occasionally to add nutrients or remove degradation products.
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Figure 1. Process flows in a membrane bioreactor.

A membrane bioreactor will have an overall mass transfer coefficient K
ov

 (m s-1)

that is defined by the mass transfer coefficient on the gas phase side of the membrane

k
g
, the mass transfer coefficient for the membrane k

m
, and the mass transfer in the

liquid phase k
l
 as written as

1/K
ov

 = 1/k
g
 + 1/k

m
 + 1/k

l
(1)

The mass of pollutants transferred through the membrane, the flux J (g m-2 s-1),

is an important design parameter for membrane bioreactors and is defined as the overall

mass transfer multiplied by the concentration gradient dC (g m-3).

J = K
ov

 * dC (2)

The mass transfer coefficient for pollutants in the membrane k
m
 is defined as

the ratio of the permeability of the pollutant P (m2 s-1) in the membrane and the

membrane thickness d (m). Permeability has been described by Solubility of the air/

membrane partition coefficient S (g m-3

membrane
 / g m-3

air
) multiplied by the diffusion

coefficient D
m
 through the membrane material (Mulder, 1996).

K
m
 = P / d = (S * D

m
) / d (3)

There are two basic types of membrane that are used in biological waste gas

purification: micro-porous membranes and dense-phase membranes. High membrane

permeability for the pollutants is an important factor in choosing a membrane type or

membrane material for a specific application.
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3 DESIGN CONSIDERATIONS

3.1 INTRODUCTION

Membrane bioreactors for waste gas treatment are relatively new. Suitable

membrane material and reactor configuration are essential in the further development

and successful application of membrane bioreactors for waste gas purification. The

relatively high cost of the membrane materials, and the lack of experience with the

different types of membranes and possible reactor configurations on a wide range of

pollutants have been an important limitation to the advancement of membrane

bioreactors. Membrane biotechnology has evolved over the last couple of years in

other areas like industrial and municipal wastewater treatment and creates new

possibilities for biological waste gas treatment.

3.2 TYPES OF MEMBRANES

There are basically two membrane types: micro-porous membranes and dense-

phase membranes. Micro-porous membranes have a porous structure with a porosity

of up to 30-85% (Hartmans et al., 1992). The pollutants can cross the membrane by

diffusing through the gas-filled pores, yet the pores are small enough to prevent micro-

organisms to pass the membrane. The membrane material is often chosen for having

hydrophobic properties, so that at relatively low trans-membrane pressures the risk of

water penetration is reduced. Dense-phase membranes have no macroscopic pores

meaning that the pollutant has to diffuse through the membrane material. This imparts

some potential for contaminant selectivity when choosing a type of dense-phase

membrane. It is critical that a membrane material with a high gas diffusion coefficient

should be used for the specific contaminants to minimise the mass transfer resistance

of the dense-phase membrane applied.

In theory, micro-porous membranes have significantly lower mass transfer

resistance than dense-phase membranes. Micro-porous membranes have higher

permeability and a poor to no selectivity in permeation compared to dense-phase

membranes. However, at high air pressures, systems deploying micro-porous

membranes run the risk of trans-membrane gas flow, which may compromise the

integrity of the membrane. In addition, micro-porous membranes are not a complete

definite barrier for micro-organisms, which could be important in certain applications.

Furthermore, micro-porous membranes are subject to fouling due to blocking of the

micro-pores, leading to a decline in performance over time (van Reij, 1996; de Bo et

al., 2003). Dense-phase membranes seem, in principal, more suitable than micro-

porous membranes for long term sustainable operation. Since the contaminant may

actually dissolve into the membrane material, the polymer phase of dense-phase

membranes might also act as a buffering medium for fluctuating inlet pollutant

loads.
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To combine the best characteristics of both types of membranes, composite

membranes made of micro-porous membrane supports coated with a dense-phase

polymer layer have been studied (de Bo et al., 2003) and seem very promising. The

very thin layer of dense-phase membrane is located on the liquid side. The supporting

porous layer is located on the gas-phase side. The composite membranes will be

inherently more complex and more expensive to manufacture than the dense-phase or

the micro-porous membranes.

The choice of membrane material depends on the pollutants to be treated.

Different membrane materials have been studied for gas treatment as has been illustrated

by Fitch (Fitch, 2005). Examples of membrane materials are poly(butadiene), latex,

poly(vinylalcohol), poly(sulfone), poly(styrenesulfone), poly(amide), poly(ethylene),

poly(tetrafluoethene), poly(propylene) and poly(dimethylsiloxane). Different

membranes are commercially available as they have been successfully used in areas

such as the medical and the food processing fields. The polymer selection for the

dense-phase membrane material needs to have a high solubility for the pollutant.

Otherwise, mass transfer resistance across the membrane will hinder the rate of

biodegradation. Poly(dimethylsiloxane) (PDMS) dense-phase membranes are relatively

permeable and seems to be relatively unselective towards pollutants (Merkel et al.,

2000; De Bo et al., 2003). The risk of dense phase membrane failures due to dissolution

or swelling of polymer when solubility is extremely high should be avoided. The

effect has been demonstrated in membrane bioreactors for benzene removal in using

a latex membrane (Fitch et al., 2003). Parameters that counteract these side-effects

are the degree of cross linking and the molecular weight of the membrane polymer

used.

3.3 MEMBRANE THICKNESS

Micro-porous and dense-phase membranes are made in a variety of different

thicknesses, but most membranes have a thickness of around 150-800 um. The

membrane thickness is preferably as small as possible, but needs to have a certain

thickness for mechanical stability. When composite membranes are used, the micro-

porous membrane is used only for support of the dense-phase layer. The dense-phase

layer can be kept very thin (< 10 um) and is usually located on only one side of the

microporous membrane.

3.4 MEMBRANE AND REACTOR CONFIGURATION

The reactor configuration is dictated by the membrane configuration. Membrane

configurations are possible in two basic shapes: tubular or flat. The choice of membrane

configuration can be based on optimizing biomass removal, but is most likely based

on optimizing mass-transfer. Mass-transfer is a transport phenomenon that is similar

to heat transfer in heat exchangers. In general the tubular configuration is most likely
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the most optimal configuration for a membrane bioreactor because of a higher surface

area to volume ratio. However, the cost of the various membrane materials, their

shape and their availability currently determines choices of membrane and reactor

configurations.

3.5 AIRFLOW DYNAMICS

Air flow dynamics of a membrane bioreactor are important for optimal treatment

as well as energy requirements during operations. The energy requirement is directly

related to pressure drop over the bioreactor system. Low pressure drop values should

be an important objective when designing a membrane bioreactor for waste gas

treatment. Figure 2 shows an example of the pressure drop as a function of the inner

diameter of tubular membranes. Larger diameters are associated with lower high

pressure drop. However larger diameters also reduce the total surface area of the

membrane, which limits the total mass-transfer and the size of the active biofilm.

Figure 2. The pressure drop versus internal diameters of a single hollow fiber PDMS membrane

at gas flow rates of 4, 6, 8 and 10 liters per minute.

3.6 WATER FLOW

Water with nutrients is usually recirculated, buffered to sustain a neutral pH

and refreshed occasionally to add nutrients or remove degradation products. The

direction of the water flow can be current or counter-current to the gas flow direction.
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The water flow recirculation rate is an important parameter in order to maintain minimal

differences in pH or nutrients concentration in the membrane bioreactor.

The water flow rate is especially of importance for the control of the amount of

biomass in the bioreactor that might accumulate at high inlet pollutant loads. Water

flow rate will generation shear forces that can discharge inactive biomass.

3.7 BIOMASS CONTROL

The membrane separates the gas phase from the biofilm layer on the liquid

side, which improves the possibilities to control the biological process. The most

active micro-organisms of the biofilm layer are located directly adjacent to the

membrane surface, which makes it possible to easily discharge inactive biomass from

the reactor. Water flow can generate shear forces on the biofilm layer that erodes only

the top layer. An increase of water flow rates will enhance this process called biomass

sloughing. The most active zone in the biofilm is likely limited to 0.2 mm or less.

Studer showed that a biofilm of less than 1 mm could easily be maintained at relatively

low shear forces (Studer, 2005).

An alternative method of removing biomass is the intermittent use of aerators.

Large gas bubbles will generate shear forces that removes excess biomass. This has

already become common practice over the last years in full-scale membrane bioreactors

for industrial and municipal wastewater treatment.

4 APPLICATION FIELDS

An application field of increasing interest for newly developed biological gas treatment

technologies is the treatment of waste gases from chemical industries that emit waste

gasses with relatively high pollutant concentrations. At what pollutants concentration

do conventional biotechniques like biofilters or biotrickling filters starts to have

difficulties treating waste gas, especially in relation to control the biomass growth?

Biomass accumulation in conventional biofilters and biotrickling filters relates to the

total pollutant load per reactor volume (Ozis, 2005). For most pollutants, an average

pollutant loading higher than 50 g/m3 reactor volume per hour will most likely sooner

or later lead to biomass accumulation in a conventional biofilter.

Up to what concentration in the waste gas is the conventional technique

incineration not self-supporting and does it require input of fuel for the incineration

process? Calculations show that waste gas with a concentration range between

approximately 0.4 – 4 g/m3 is interesting for most contaminants for future applications

of newly developed biological waste gas treatment systems (Bioway, 2007).

Other specific fields of application are the printing and paint industries, where

relatively poorly water-soluble solvents are used. That normally leads to high treatment
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costs as these compounds are difficult to remove by conventional waste gas treatment

techniques. Relatively small facilities often face high capital investments for

incinerators that often can not operate under economically feasible circumstances.

Biological treatment is only possible when temperature is in a suitable range

for the micro-organisms that are used. As the gas phase is separated from the biomass

at the liquid side of the membrane, membrane bioreactors can also be applied for the

treatment of relatively hot off-gasses. The recirculating liquid can be used for heat

exchange to keep the biofilm at the required temperature range for optimal biological

degradation.

Not only airstreams with relatively high temperatures or high concentrations

are suitable for further development of membrane bioreactors. Also airstreams with

very low concentrations, such as indoor air, form an interesting application field

(Llewellyn and Dixon, 2006) as for example an increase in air humidity (often unwanted

in the case of indoor environments) can be avoided using membranes technology. As

the air stream is completely separated from the biomass by the membrane, the risk of

airborne particles possibly containing unwanted microbes from the biological treatment

system is also eliminated. The application of membrane biofilters for air quality control

in space crafts (van Ras et al., 2006) as well as a variety of occupied terrestrial

environments is currently being investigated. Long term space missions require a

sustainable air purification technology that uses a minimum energy demand and does

not generate any waste products, which membrane biotechnology can provide.

5 CONCLUSIONS

Bioreactors using membranes are of interest for new applications as they have some

important advantages over conventional waste gas treatment systems, including

conventional biological waste gas treatment systems. Challenges are still present as

an extra resistance for mass transfer from the gas phase to the biofilm might be

introduced using a membrane. Thinner and cheaper membranes are required. Research

and development have a current focus on the design of the systems that require input

of basic parameters like permeability of pollutants for the membrane material and

optimal reactor configurations.
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