18 research outputs found

    Technology of 3D Simulation of High-Speed Damping Processes in the Hydraulic Brake Device

    Get PDF
    This chapter describes a three-dimensional simulation technology for physical processes in concentric hydraulic brakes with a throttling-groove partly filled hydraulic cylinder. The technology is based on the numerical solution of a system of Navier–Stokes equations. Free surface tracking is provided by the volume of fluid (VOF) method. Recoiling parts are simulated by means of moving transformable grids. Numerical solution of the equations is based on the finite-volume discretization on an unstructured grid. Our technology enables simulations of the whole working cycle of the hydraulic brake. Results of hydraulic brake simulations in the counter-recoil regime are reported. The results of the simulations are compared with experimental data obtained on JSC “KBP” test benches. The calculated and the experimental sets of data are compared based on the piston velocity as a function of distance. The performance of the hydraulic brake is studied as a function of the fluid mass and firing elevation of the gun

    THREE-DIMENSIONAL NUMERICAL SIMULATION OF TSUNAMI WAVES BASED ON THE NAVIER-STOKES EQUATIONS

    Get PDF
    A numerical algorithm of solving the three-dimensional system of Navier-Stokes equations to simulate free surface waves and flows with gravity is presented. The main problem here is to ensure that the gravity force is properly accounted in the presence of discontinuities in the medium density. The task is made more complicated due the use of unstructured computational grids with collocated placement of unknown quantities and splitting algorithms based on SIMPLE-type methods. To obtain correctly the hydrostatic pressure, it is suggested that the contribution of the gravitational force in the equation for pressure should be distinguished explicitly; the latter being calculated by using the solution of the two-phase medium gravitational balance problem. To ensure the balance of the gravity force and the pressure gradient in the case of rest an algorithm in which the pressure gradient in the equation of motion is replaced by a modification considering the gravitational force action is suggested. This method is demonstrated by the example of tsunami wave propagation in the real water area of the World Ocean

    Simulation of Turbulent Convection at High Rayleigh Numbers

    Get PDF
    The paper considers the possibility of using different approaches to modeling turbulence under conditions of highly developed convection at high Rayleigh numbers. A number of industrially oriented problems with experimental data have been chosen for the study. It is shown that, at Rayleigh numbers from 109 to 1017, the application of the eddy-resolving LES model makes it possible to substantially increase the accuracy of modeling natural convection in comparison with the linear vortex viscosity model SST. This advantage is most pronounced for cases of a vertical temperature difference with the formation of a large zone of convection of strong intensity. The use of the Reynolds stress model EARSM is shown for cases of natural convective flow in domains with dihedral angles in the simulated region and the predominance of secondary currents. When simulating a less intense convective flow, when the temperature difference is reached at one boundary, the differences in the approaches used to model turbulence are less significant. It is shown that, with increasing values of Rayleigh numbers, errors in the determination of thermohydraulic characteristics increase and, for more accurate determination of them, it is expedient to use eddy-resolving approaches to the modeling of turbulence

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Differences in Medium-Induced Conformational Plasticity Presumably Underlie Different Cytotoxic Activity of Ricin and Viscumin

    No full text
    Structurally similar catalytic subunits A of ricin (RTA) and viscumin (MLA) exhibit cytotoxic activity through ribosome inactivation. Ricin is more cytotoxic than viscumin, although the molecular mechanisms behind this difference are still poorly understood. To shed more light on this problem, we used a combined biochemical/molecular modeling approach to assess possible relationships between the activity of toxins and their structural/dynamic properties. Based on bioassay measurements, it was suggested that the differences in activity are associated with the ability of RTA and MLA to undergo structural/hydrophobic rearrangements during trafficking through the endoplasmic reticulum (ER) membrane. Molecular dynamics simulations and surface hydrophobicity mapping of both proteins in different media showed that RTA rearranges its structure in a membrane-like environment much more efficiently than MLA. Their refolded states also drastically differ in terms of hydrophobic organization. We assume that the higher conformational plasticity of RTA is favorable for the ER-mediated translocation pathway, which leads to a higher rate of toxin penetration into the cytoplasm

    Kalium database

    No full text
    <p>Complete copy of Kalium 2.0 database in the CSV format, six .csv files:<br></p> <p>Activity.csv</p> <p>Organism.csv</p> <p>OrganismClass.csv</p> <p>TargetCannel.csv</p> <p>Toxin.csv</p> <p>ToxinFamily.csv</p> <p> </p> <p>export_all_tc.csv contains data in the format of concatenated Ligand cards presented in an expanded manner. This looks similar to the export file, which can be downloaded from Kalium by users, but contains additional information for each entry.</p> <p> </p> <p>In export_all_act.csv each string describes the activity of every Kalium entry against a particular target (potassium channel isoform).</p

    Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex

    No full text
    Microbial rhodopsins, which constitute a family of seven-helix membrane proteins with retinal as a prosthetic group, are distributed throughout the Bacteria, Archaea and Eukaryota(1- 3). This family of photoactive proteins uses a common structural design for two distinct functions: light-driven ion transport and phototaxis. The sensors activate a signal transduction chain similar to that of the two-component system of eubacterial chemotaxis(4). The link between the photoreceptor and the following cytoplasmic signal cascade is formed by a transducer molecule that binds tightly and specifically 5 to its cognate receptor by means of two transmembrane helices (TM1 and TM2). It is thought that light excitation of sensory rhodopsin II from Natronobacterium pharaonis (SRII) in complex with its transducer (HtrII) induces an outward movement of its helix F (ref. 6), which in turn triggers a rotation of TM2 (ref. 7). It is unclear how this TM2 transition is converted into a cellular signal. Here we present the X-ray structure of the complex between N. pharaonis SRII and the receptor-binding domain of HtrII at 1.94 Angstrom resolution, which provides an atomic picture of the first signal transduction step. Our results provide evidence for a common mechanism for this process in phototaxis and chemotaxis

    True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins

    No full text
    International audienceHydrogen bonds are fundamental to the structure and function of biological macromolecules and have been explored in detail. The chains of hydrogen bonds (CHBs) and low-barrier hydrogen bonds (LBHBs) were proposed to play essential roles in enzyme catalysis and proton transport. However, high-resolution structural data from CHBs and LBHBs is limited. The challenge is that their 'visualization' requires ultrahigh-resolution structures of the ground and functionally important intermediate states to identify proton translocation events and perform their structural assignment. Our true-atomic-resolution structures of the light-driven proton pump bacteriorhodopsin, a model in studies of proton transport, show that CHBs and LBHBs not only serve as proton pathways, but also are indispensable for long-range communications, signaling and proton storage in proteins. The complete picture of CHBs and LBHBs discloses their multifunctional roles in providing protein functions and presents a consistent picture of proton transport and storage resolving long-standing debates and controversies

    K(v)1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: Structural basis of selectivity

    No full text
    Scorpion venom is an unmatched source of selective high-affinity ligands of potassium channels. There is a high demand for such compounds to identify and manipulate the activity of particular channel isoforms. The objective of this study was to obtain and characterize a specific ligand of voltage-gated potassium channel KV1.2. As a result, we report the remarkable selectivity of the peptide MeKTx11-1 (α-KTx 1.16) from Mesobuthus eupeus scorpion venom to this channel isoform. MeKTx11-1 is a high-affinity blocker of KV1.2 (IC50 ∼0.2 nM), while its activity against KV1.1, KV1.3, and KV1.6 is 10 000, 330 and 45 000 fold lower, respectively, as measured using the voltage-clamp technique on mammalian channels expressed in Xenopus oocytes. Two substitutions, G9V and P37S, convert MeKTx11-1 to its natural analog MeKTx11-3 (α-KTx 1.17) having 15 times lower activity and reduced selectivity to KV1.2. We produced MeKTx11-1 and MeKTx11-3 as well as their mutants MeKTx11-1(G9V) and MeKTx11-1(P37S) recombinantly and demonstrated that point mutations provide an intermediate effect on selectivity. Key structural elements that explain MeKTx11-1 specificity were identified by molecular modeling of the toxin-channel complexes. Confirming our molecular modeling predictions, site-directed transfer of these elements from the pore region of KV1.2 to KV1.3 resulted in the enhanced sensitivity of mutant KV1.3 channels to MeKTx11-1. We conclude that MeKTx11-1 may be used as a selective tool in neurobiology.status: publishe
    corecore