6 research outputs found

    High-throughput measurement of fibroblast rhythms reveals genetic heritability of circadian phenotypes in diversity outbred mice and their founder strains.

    Get PDF
    Circadian variability is driven by genetics and Diversity Outbred (DO) mice is a powerful tool for examining the genetics of complex traits because their high genetic and phenotypic diversity compared to conventional mouse crosses. The DO population combines the genetic diversity of eight founder strains including five common inbred and three wild-derived strains. In DO mice and their founders, we established a high-throughput system to measure cellular rhythms using in vitro preparations of skin fibroblasts. Among the founders, we observed strong heritability for rhythm period, robustness, phase and amplitude. We also found significant sex and strain differences for these rhythms. Extreme differences in period for molecular and behavioral rhythms were found between the inbred A/J strain and the wild-derived CAST/EiJ strain, where A/J had the longest period and CAST/EiJ had the shortest. In addition, we measured cellular rhythms in 329 DO mice, which displayed far greater phenotypic variability than the founders-80% of founders compared to only 25% of DO mice had periods of ~ 24 h. Collectively, our findings demonstrate that genetic diversity contributes to phenotypic variability in circadian rhythms, and high-throughput characterization of fibroblast rhythms in DO mice is a tractable system for examining the genetics of circadian traits

    Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus

    No full text
    Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders

    The Suprachiasmatic Nucleus Regulates Anxiety-Like Behavior in Mice

    No full text
    Individuals suffering from mood and anxiety disorders often show significant disturbances in sleep and circadian rhythms. Animal studies indicate that circadian rhythm disruption can cause increased depressive- and anxiety-like behavior, but the underlying mechanisms are unclear. One potential mechanism to explain how circadian rhythms are contributing to mood and anxiety disorders is through dysregulation of the suprachiasmatic nucleus (SCN) of the hypothalamus, known as the “central pacemaker.” To investigate the role of the SCN in regulating depressive- and anxiety-like behavior in mice, we chronically manipulated the neural activity of the SCN using two optogenetic stimulation paradigms. As expected, chronic stimulation of the SCN late in the active phase (circadian time 21, CT21) resulted in a shortened period and dampened amplitude of homecage activity rhythms. We also repeatedly stimulated the SCN at unpredictable times during the active phase of mice when SCN firing rates are normally low. This resulted in dampened, fragmented, and unstable homecage activity rhythms. In both chronic SCN optogenetic stimulation paradigms, dampened homecage activity rhythms (decreased amplitude) were directly correlated with increased measures of anxiety-like behavior. In contrast, we only observed a correlation between behavioral despair and homecage activity amplitude in mice stimulated at CT21. Surprisingly, the change in period of homecage activity rhythms was not directly associated with anxiety- or depressive-like behavior. Finally, to determine if anxiety-like behavior is affected during a single SCN stimulation session, we acutely stimulated the SCN in the active phase (zeitgeber time 14-16, ZT14-16) during behavioral testing. Unexpectedly this also resulted in increased anxiety-like behavior. Taken together, these results indicate that SCN-mediated dampening of rhythms is directly correlated with increased anxiety-like behavior. This work is an important step in understanding how specific SCN neural activity disruptions affect depressive- and anxiety-related behavior

    Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders

    No full text
    corecore