283 research outputs found

    Améliorer la connaissance du patrimoine en France pour une gestion durable du patrimoine des réseaux d'eau potable

    Get PDF
    IWA World Water Congress & Exhibition, Tokyo, JPN, 16-/09/2018 - 21/09/2018International audienceWith the aim of improving the implementation and evaluation of public policy in France relating to sustainable drinking water asset management (regulation at national level and subsidies at watershed level) the French Ministry of Ecology asked Irstea, a state research body, to create an ongoing system to manage technical and financial knowledge relating to drinking water network assets. In this study we develop a statistical approach to model pipe length by category, based on the geographical characteristics of the territory in which they are installed. Multivariate models including road length have been found to be pertinent. This technical analysis is accompanied by a study of asset values and renewal costs, based on a typology of water suppliers and an examination of economic and financial ratios. A number of disparities between territories are highlighted

    Signification géodynamique des calcaires de plate-forme en cours de subduction sous l'arc des Nouvelles-Hébrides (Sud-Ouest de l'océan Pacifique)

    Get PDF
    Note présentée par Jean DercourtInternational audienceThe analysis of carbonates from New Hébrides Trench shows that three main épisodes of shallow water carbonate déposition occurred during Late Eocene,Late Oligocene-Early Miocène,Mio-Pliocene-Quaternary, controlled by eustatism and tectonic.L'analyse de carbonates issus de la fosse des Nouvelles-Hébrides a permis de reconnaître trois périodes favorables au développement de plates-formes(Éocène supérieur,Oligocène supérieur-Miocène inférieur,Mio-Pliocène-Quaternaire)contrôlé par l'eustatisme et la tectonique

    Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy

    Get PDF
    The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter

    Global Diversity of Sponges (Porifera)

    Get PDF
    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future

    Action plan for the conservation of habitats and species associated with seamounts, underwater caves and canyons, aphotic hard beds and chemo-synthetic phenomena in the Mediterranean Sea (Dark Habitats action plan)

    Get PDF
    Dark habitats are environments where the luminosity is extremely weak, or even absent (aphotic area) leading to an absence of macroscopic autochthonous photosynthesis. The bathymetric extension of this lightless area depends to a great extent on the turbidity of the water and corresponds to benthic and pelagic habitats starting from the deep circa-littoral. Caves which show environmental conditions that favour the installation on of organisms characteristic of dark habitats, are also taken into account. Dark habitats are dependent on very diverse geomorphological structures (e.g. underwater caves, canyons, slopes, isolated rocks, abyssal plains, cold seeps, brine anoxic lakes, hydrothermal springs and seamounts). Dark habitats represent outstanding and potential ecosystems with regard to their: Frailty and vulnerability to any land-based pressure Play an important part in the way the Mediterranean ecosystem functions, insofar as they constitute the main route for transferring matter between the coast and the deep sea Considered as biodiversity hotspots and recruiting areas forming a veritable reservoirs of knowledge and biodiversity Natural habitats that come under Habitat Directive on the conservation of natural habitats and of wild fauna and flora and appear as such as priority habitats requiring protection (Directive 92/43). A certain number of underwater caves enjoy protection status because they fall within the geographical boundaries of Marine Protected Areas (MPAs) Understanding of these functions is necessary for a better understanding and management of the biodiversity of Mediterranean coastal zones and continental shelf.peer-reviewe

    Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    Get PDF
    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations

    Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    Get PDF
    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a thorough revision, which cannot be achieved by considering morphology alone or relying on a taxon sampling based on the current classification below the subclass level

    Biological Characterisation of Haliclona (?gellius) sp.: Sponge and Associated Microorganisms

    Get PDF
    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were identical. The microbial fingerprint of three specimens harvested at different times and of a transplanted specimen was compared to identify stably associated microorganisms. Most bacterial phyla were detected in each sample, but only a few bacterial species were determined to be stably associated with the sponge. A sponge-specific β- and γ-Proteobacterium were abundant clones and both of them were present in three of the four specimens analysed. In addition, a Planctomycete and a Crenarchaea were detected in all sponge individuals. Both were closely related to operational taxonomic units that have been found in other sponges, but not exclusively in sponges. Interestingly, also a number of clones that are closely related to intracellular symbionts from insects and amoeba were detected
    corecore