99 research outputs found

    Coframe teleparallel models of gravity. Exact solutions

    Get PDF
    The superstring and superbrane theories which include gravity as a necessary and fundamental part renew an interest to alternative representations of general relativity as well as the alternative models of gravity. We study the coframe teleparallel theory of gravity with a most general quadratic Lagrangian. The coframe field on a differentiable manifold is a basic dynamical variable. A metric tensor as well as a metric compatible connection is generated by a coframe in a unique manner. The Lagrangian is a general linear combination of Weitzenb\"{o}ck's quadratic invariants with free dimensionless parameters \r_1,\r_2,\r_3. Every independent term of the Lagrangian is a global SO(1,3)-invariant 4-form. For a special choice of parameters which confirms with the local SO(1,3) invariance this theory gives an alternative description of Einsteinian gravity - teleparallel equivalent of GR. We prove that the sign of the scalar curvature of a metric generated by a static spherical-symmetric solution depends only on a relation between the free parameters. The scalar curvature vanishes only for a subclass of models with \r_1=0. This subclass includes the teleparallel equivalent of GR. We obtain the explicit form of all spherically symmetric static solutions of the ``diagonal'' type to the field equations for an arbitrary choice of free parameters. We prove that the unique asymptotic-flat solution with Newtonian limit is the Schwarzschild solution that holds for a subclass of teleparallel models with \r_1=0. Thus the Yang-Mills-type term of the general quadratic coframe Lagrangian should be rejected.Comment: 28 pages, Latex error is fixe

    Hamiltonian Poincar\'e Gauge Theory of Gravitation

    Full text link
    We develop a Hamiltonian formalism suitable to be applied to gauge theories in the presence of Gravitation, and to Gravity itself when considered as a gauge theory. It is based on a nonlinear realization of the Poincar\'e group, taken as the local spacetime group of the gravitational gauge theory, with SO(3)SO(3) as the classification subgroup. The Wigner--like rotation induced by the nonlinear approach singularizes out the role of time and allows to deal with ordinary SO(3)SO(3) vectors. We apply the general results to the Einstein--Cartan action. We study the constraints and we obtain Einstein's classical equations in the extremely simple form of time evolution equations of the coframe. As a consequence of our approach, we identify the gauge--theoretical origin of the Ashtekar variables.Comment: 38 pages, plainTe

    Plane torsion waves in quadratic gravitational theories

    Get PDF
    The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.Comment: 3 May 1998. - 11

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    Conservation of energy-momentum of matter as the basis for the gauge theory of gravitation

    Full text link
    According to Yang \& Mills (1954), a {\it conserved} current and a related rigid (`global') symmetry lie at the foundations of gauge theory. When the rigid symmetry is extended to a {\it local} one, a so-called gauge symmetry, a new interaction emerges as gauge potential AA; its field strength is FcurlAF\sim {\rm curl} A. In gravity, the conservation of the energy-momentum current of matter and the rigid translation symmetry in the Minkowski space of special relativity lie at the foundations of a gravitational gauge theory. If the translation invariance is made local, a gravitational potential ϑ\vartheta arises together with its field strength TcurlϑT\sim {\rm curl}\,\vartheta. Thereby the Minkowski space deforms into a Weitzenb\"ock space with nonvanishing torsion TT but vanishing curvature. The corresponding theory is reviewed and its equivalence to general relativity pointed out. Since translations form a subgroup of the Poincar\'e group, the group of motion of special relativity, one ought to straightforwardly extend the gauging of the translations to the gauging of full Poincar\'e group thereby also including the conservation law of the {\it angular momentum} current. The emerging Poincar\'e gauge (theory of) gravity, starting from the viable Einstein-Cartan theory of 1961, will be shortly reviewed and its prospects for further developments assessed.Comment: 46 pages, 4 figures, minor corrections, references added, contribution to "One Hundred Years of Gauge Theory" edited by S. De Bianchi and C. Kiefe

    Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    Get PDF
    Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74 < r(g) < -0.55) and blood pressure (-0.35 < r(g) < -0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization
    corecore