76 research outputs found

    Cyclooxygenase inhibitors impair CD4 T cell immunity and exacerbate Mycobacterium tuberculosis infection in aerosol-challenged mice

    Get PDF
    Tuberculosis, caused by infection with Mycobacterium tuberculosis (Mtb), kills over 1.6 million people each year despite availability of antibiotics. The increase in drug resistant Mtb strains is a major public health emergency and host-directed therapy as adjunct to antibiotic treatment has gained increased interest. Cyclooxygenase inhibitors (COXi) are frequently used drugs to alleviate tuberculosis related symptoms. Mouse studies of acute intravenous Mtb infection have suggested a potential benefit of COXi for host-directed therapy. Here we show that COXi treatment (ibuprofen and celecoxib) is detrimental to Mtb control in different mouse models of respiratory infection. This effect links to impairments of the Type-1 helper (Th1) T-cell response as CD4 T-cells in COXi-treated animals have significantly decreased Th1 differentiation, reduced IFNγ expression and decreased protective capacity upon adoptive transfer. If confirmed in clinical trials, these findings could have major impact on global health and question the use of COXi for host-directed therapy.publishedVersio

    Periodic Accumulation of Regulatory T Cells in the Uterus: Preparation for the Implantation of a Semi-Allogeneic Fetus?

    Get PDF
    BACKGROUND: Naturally occurring Foxp3(+)regulatory T cells play an important role in the inhibition of an immunological attack of the fetus. As implantation of the fetus poses an immediate antigenic challenge, the immune system has to prepare itself for this event prior to implantation. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we show using quantitative RT-PCR and flow cytometry that regulatory T cells accumulate in the uterus not only during pregnancy, but also every time the female becomes fertile. Their periodic accumulation is accompanied by matching fluctuations in uterine expression of several chemokines, which have been shown to play a role in the recruitment and retention of regulatory T cells. CONCLUSIONS/SIGNIFICANCE: The data lead us to propose that every time a female approaches estrus, regulatory T cells start to accumulate in the uterus in preparation for a possible implantation event. Once pregnancy is established, those regulatory T cells that have seen alloantigen need to be retained at their site of action. Whilst several chemokines appear to be involved in the recruitment and/or retention of regulatory T cells during estrus, in pregnancy this role appears to be taken over by CCL4

    Stabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds

    Get PDF
    We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of Tm of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the Tm of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the Tm of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule

    Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts

    Get PDF
    We have found that a water-soluble alkaline-digested form of eggshell membrane (ASESM) can provide an extracellular matrix (ECM) environment for human dermal fibroblast cells (HDF) in vitro. Avian eggshell membrane (ESM) has a fibrous-meshwork structure and has long been utilized as a Chinese medicine for recovery from burn injuries and wounds in Asian countries. Therefore, ESM is expected to provide an excellent natural material for biomedical use. However, such applications have been hampered by the insolubility of ESM proteins. We have used a recently developed artificial cell membrane biointerface, 2-methacryloyloxyethyl phosphorylcholine polymer (PMBN) to immobilize ASESM proteins. The surface shows a fibrous structure under the atomic force microscope, and adhesion of HDF to ASESM is ASESM-dose-dependent. Quantitative mRNA analysis has revealed that the expression of type III collagen, matrix metalloproteinase-2, and decorin mRNAs is more than two-fold higher when HDF come into contact with a lower dose ASESM proteins immobilized on PMBN surface. A particle-exclusion assay with fixed erythrocytes has visualized secreted water-binding molecules around the cells. Thus, HDF seems to possess an ECM environment on the newly designed PMBN-ASESM surface, and future applications of the ASESM-PMBN system for biomedical use should be of great interest

    Skin involvement in Dupuytren's disease.

    Get PDF
    Whether the palmar skin has a role in the development, propagation or recurrence of Dupuytren's disease remains unclear. Clinical assessment for skin involvement is difficult and its correlation with histology uncertain. We prospectively biopsied the palmar skin of consecutive patients undergoing single digit fasciectomy (for primary Dupuytren's disease without clinically involved skin) and dermofasciectomy (for clinically involved skin or recurrence) in order to investigate this relationship. We found dermal fibromatosis in 22 of 44 patients (50%) undergoing fasciectomy and 41 of 59 patients (70%) undergoing dermofasciectomy. Dermal fibromatosis appeared to be associated with greater preoperative angular deformity, presence of palmar nodules and occupations involving manual labour. Dermal fibromatosis exists in the absence of clinical features of skin involvement and we hypothesize that the skin may have a greater role in the development and propagation of Dupuytren's disease than previously thought.III

    Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair

    Get PDF
    RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation
    • …
    corecore