

This is a repository copy of Skin involvement in Dupuytren's disease...

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/105541/

Version: Accepted Version

Article:

Wade, R orcid.org/0000-0001-8365-6547, Igali, L and Figus, A (2016) Skin involvement in Dupuytren's disease. The Journal of hand surgery, European volume, 41 (6). pp. 600-608. ISSN 1753-1934

https://doi.org/10.1177/1753193415601353

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Skin Involvement in Dupuytren's Disease
2	
3	R G Wade ¹ , L Igali ² , A Figus ^{1, 3}
4	
5	1. Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University
6	Hospital NHS Foundation Trust, Norwich, UK.
7	2. Norfolk and Waveney Cellular Pathology Network, Cotman Centre, Norfolk and
8	Norwich University Hospital NHS Foundation Trust, Norwich, UK.
9	3. Norwich Medical School, Faculty of Medicine and Health Sciences, University of East
10	Anglia, Norwich, UK.
11	
12	
13	Corresponding Author
14	Mr Andrea Figus, MD(Hons) PhD(Hons) FEBOPRAS
15	Consultant Plastic & Reconstructive Surgeon
16	Department of Plastic and Reconstructive Surgery
17	Norfolk and Norwich University Hospital NHS Foundation Trust
18	Norwich, UK
19	NR4 7UY
20	E-mail: andrea.figus@nnuh.nhs.uk
21	
22	Keywords
23	Dupuytren's; Disease; Contracture; Fibromatosis; Fasciectomy; Dermofasciectomy; Skin;
24	Graft; Recurrence; Dermis; Dermal; Outcome; Risk
25	
26	
27	Abstract
28	

Page 1 of 23

29	Whether the palmar skin has a role in the development, propagation or recurrence of	
30	Dupuytren's disease remains unclear. Clinical assessment for skin involvement is difficult	
31	and its correlation with histology uncertain. We prospectively biopsied the palmar skin of	
32	consecutive patients undergoing single digit fasciectomy (for primary Dupuytren's disease	
33	without clinically involved skin) and dermofasciectomy (for clinically involved skin or	
34	recurrence), in order to investigate this relationship. We found dermal fibromatosis in 22 of	
35	44 (50%)-patients undergoing fasciectomy and 41 of 59 patients (70%) undergoing	
36	dermofasciectomy. Dermal fibromatosis appeared to be associated with greater pre-	
37	operative angular deformity, the presence of palmar nodules and occupations involving	
38	manual labour. Dermal fibromatosis exists in the absence of clinical features of skin	
39	involvement and we hypothesise that the skin may have a greater role in the development	
40	and propagation of Dupuytren's disease than previously thought.	
41		
42	Abstract word count = <u>1404</u>	Formatted: Font color: Red
43	Article word count = 29709	Formatted: Font color: Red
44		
45	Level of Evidence = 3	
46		

Page **2** of **23**

INTRODUCTION

47

48		
49	Dupuytren's disease is a common fibroproliferative disorder with a worldwide prevalence of	
50	up to 321.6% (Lanting et al., 2014). Despite its morbidity and associated costs to health	_(
51	services (Gerber et al., 2011) many aspects of the pathogenesis, classification and	
52	management remain strongly debated. In particular, the role of the palmar skin in the	
53	development, propagation, surgical management and risk of recurrence remains uncertain.	
54		
55	There are numerous treatment modalities available for patients with Dupuytren's disease	
56	(Eaton, 2014). Mild disease may be observed. Intralesional collagenase injections,	
57	percutaneous needle fasciotomy or selective aponeurectomy are suitable for palmar disease	
58	proximal to the metacarpophalangeal joints (MCPJs), although progression or recurrence	
59	affects up to 85% of cases (Betz et al., 2010; Mehta and Belcher, 2014; Mickelson et al.,	
60	2014; van Rijssen et al., 2012; Verheyden, 2015). Limited fasciectomy (Hueston, 1961) is	
61	the most common primary procedure for moderate to severe disease, although again up to	
62	100% of patients experience recurrence or extension (Kan et al., 2013; Werker et al., 2012).	
63	In the 1960s, Hueston suggested that recurrent Dupuytren's disease should be managed by	
64	skin replacement (Hueston, 1962; Hueston, 1969). This hypothesis was developed by Logan	
65	and colleagues, compounding the importance of radically excising all pre-axial tissue (skin,	
66	fat and fibrous tissue) and covering the defect with a full thickness skin graft (FTSG) (Logan	
67	et al., 1985; Searle and Logan, 1992). The same group later showed that fibromatosis was	
68	present in the skin of patients with recurrent Dupuytren's disease and therefore suggested	
69	dermofasciectomy to be the most appropriate surgical option (McCann et al., 1993). Since	
70	then, dermofasciectomy and FTSG have been shown to reduce the risk of recurrence by up	
71	to 33% (Abe et al., 2004; Armstrong et al., 2000; Brotherston et al., 1994; Ebelin et al., 1991;	
72	Hall et al., 1997; Hueston, 1984; Kelly and Varian, 1992; Ketchum and Hixson, 1987; Tonkin	
73	et al., 1984). The current clinical indications for dermofasciectomy include recurrent disease	
74	and clinically involved skin. However, clinical assessment for skin involvement is difficult and	

Formatted: Font color: Red

Page 3 of 23

- 75 of debatable reliability. Moreover, the relationship between clinical assessment and histological involvement is unclear. To-date, there is limited literature comparing the clinical 76 and histological features of Dupuytren's disease in the skin (Chen et al., 2009; Hall et al., 77 1997; Hindocha et al., 2011; Iqbal et al., 2012; Logan et al., 1985; McCann et al., 1993) and 78 79 no reports on microscopic examination of clinically uninvolved skin. 80 81 As the palmar skin may be involved by Dupuytren's disease more often than the clinical assessment suggests, our objective was to compare the histological characteristics of the 82 palmar skin with clinical outcomes, for patients undergoing fasciectomy and
- 84 85

dermofasciectomy.

83

METHODS

86 87

88	Between November 2009 and November 2012, an electronic database was prospectively
89	completed in order to capture the details of all consecutive patients undergoing fasciectomy
90	or dermofasciectomy for Dupuytren's disease, under the care of the senior author (AF). This
91	database was retrospectively reviewed and supplemented by written and electronic notes.
92	
93	According to our Hospital's funding protocol, surgery is offered when the disease adversely
94	affects day-to-day activities with pain or when a digital contracture in any joint(s) is >20°.
95	Skin involvement was defined by the presence of palmar pits, with or without firm and
96	deficient skin tethered to a nodule or cord (Townley et al., 2006). Recurrence was defined by
97	the return of nodules or cords in a previously operated area in association with recurrent
98	contracture(s) >20° (Kan et al., 2013). We offer dermofasciectomy when there is obvious
99	clinical evidence of skin involvement or in the presence of recurrent contracture(s).
100	Otherwise, we offer a fasciectomy as the primary procedure in all cases.
101	
102	This study was originally designed as an audit of surgical outcomes on Dupuytren's disease
103	(Institutional registration number PS2013009). In order to minimise confounding variables
104	and biases, we appraised only patients undergoing surgery on one digit of one hand for
105	Dupuytren's disease. We felt that this would allow more reliable comparisons and
106	conclusions to be drawn, ie. range of motion would not be adversely effected by surgery on
107	adjacent digits or the palm, all the grafts would be of a similar size as only one digit was
108	covered, etc. Therefore, at baseline we excluded patients undergoing bilateral, multi-digit or
109	simultaneous non-Dupuytren's surgery (eg. carpal tunnel decompression). At baseline we
110	also excluded those who declined the offered/advised procedure and those presenting with
111	a 2 nd -second recurrence within a previously operated ray (ie. requiring a 3 rd -third surgery to
112	the same ray), as we felt that this would further increase the heterogeneity of the cohort. We
113	also retrospectively excluded those patients with unavailable/unclear histological diagnoses

Formatted: Font color: Red
Formatted: Font color: Red

Page 5 of 23

(Figure 1). Patients were grouped as fasciectomy or dermofasciectomy for comparativeanalysis.

116

117	Within the study period, all consecutive patients were counselled, consented and operated
118	on by the same author (AF). Fasciectomy involved either Bruner or Skoog incision(s),
119	followed by careful dissection and excision of pathological tissue whilst preserving
120	neurovascular structures. For patients undergoing fasciectomy, a sliver of skin from the
121	margin of the incisions (mean size 3x11 mm) directly overlying a cord or nodule on the
122	palmar aspect of the involved finger, was excised and sent for histological analysis.
123	According to Logan and colleagues (Hall et al., 1997; McCann et al., 1993),
124	dermofasciectomy was performed by excising the palmar skin and underlying subcutaneous
125	tissue from the distal palmar crease up to the distal interphalangeal joint (DIPJ) crease as
126	necessary, following mid-lateral incisions. The entire specimen was sent for histological
127	analysis. FTSGs were harvested from the ipsilateral medial arm and inset with absorbable 4-
128	0 braided sutures (Vicryl rapide $^{\mathrm{TM}}$) and a tie-over dressing. The hand was wrapped in soft
129	dressing without splintage (Jerosch-Herold et al., 2011; Kemler et al., 2012). All operations
130	were planned as day case procedures and patients only stayed overnight for social reasons
131	or pain relief.
132	
133	Data including age, sex, occupation, handedness and medical history were recorded
134	alongside the degree of digital deformities and presence of palpable cords or nodules. We
135	classified builders, plumbers, factory workers and similar roles as manual labourers. Angular
136	deformities at the MCPJs, proximal interphalangeal joints (PIPJs) and DIPJs were measured
137	with a standard office goniometer placed on the dorsum of the digit, by an independent Hand
138	Therapist before surgery and Six months after surgery (Ellis and Bruton, 2002). The
139	cumulative flexion deformity was calculated as the sum of the deformities measured at the
140	MCPJ, PIPJ and DIPJ for the given digit. For the purpose of statistical analysis, the IPJ of
141	the thumb was categorised as a PIPJ. Preoperative clinical assessment for skin involvement

Formatted: Font color: Red

Page 6 of 23

142	was undertaken and recorded by the senior author during the first consultation. Tissue
143	samples were sectioned into multiple slices for H&E stain microscopy by experienced
144	specialised skin histopathologists. The diagnosis of dermal fibromatosis was binary and
145	based on overall morphology. We considered a partial graft failure as necrosis of <u>less than</u>
146	ten percent<10% of the graft. Complex Regional Pain Syndrome was diagnosed according
147	to the International Association for the Study of Pain criteria (Harden et al., 2007). Follow-up
148	ranged between <u>e-six and 26-twenty six months with (a mean of 12.4 months).</u>
149	

150 Normally distributed data are presented as means with standard deviations (SD) and 151 compared by the independent samples t-tests. Skewed distributions are presented as medians with interquartile ranges (IQR) and compared by the the Mann-Whitney U-Test. 152 Categorical variables (as frequencies with percentages) were compared with Chi Square or 153 Fisher's exact tests to generate odds ratios (OR) with 95% confidence intervals (CI). As we 154 changed the focus of our study (from the planned audit of surgical outcomes to focus on the 155 156 high rate of skin involvement), we performed multiple analyses; therefore, in order to address this we have generated a family wise error rate according to the Bonferroni method 157

and our significance level is set at p<0.002.

159

Formatted: Font color: Red

Formatted: Font color: Red
Formatted: Font color: Red
Formatted: Font color: Red

Page 7 of 23

RESULTS

160

161			
162	During the study period, 169 surgical procedures for Dupuytren's disease were performed.		
163	Of these, 103 cases were included and the reasons for exclusion are shown in Figure 1.		
164	There were 44 fasciectomies (432.7%) and 59 dermofasciectomies (57.3%).	(Formatted: Font color: Red
165			Formatted: Font color: Red
166	Table 1 shows participants' demographics. Dermofasciectomy appeared to be more		
167	common amongst participants who had previously required surgery for Dupuytren's disease		
168	on the same hand (732.8% vs. 52.3%, p=0.039). Of the dermofasciectomies, 29 were for		Formatted: Font color: Red
169	recurrent disease (49.2%)		Formatted: Font color: Red
105			Formatted: Font color: Red
170			
171	The mean total anaesthetic time for dermofasciectomy and FTSG was significantly greater		
172	than fasciectomy (2 hours 36 minutes vs. 1 hour 49 minutes, p<0.001). Thirty-two patients		
173	(31.4%) stayed overnight.	(Formatted: Font color: Red
174			
175	Outcomes are shown in Table 2. Histopathologically, dermal fibromatosis was present in		
176	61-2% of cases. Further, out of 44 patients with dermal involvement This included 22		Formatted: Font color: Red
177	patients (50%) with<u>had</u> no clinical features of skin involvement <u>who and so</u>underwent		Formatted: Font color: Red
178	fasciectomy, as per protocol.		
179			
180	Pre-operative angular deformity appeared to be greater in the dermofasciectomy group,		
181	although this was not statistically significant after statistical correctionSimilarly, both-Both	(Formatted: Font color: Red
182	groups attained a straighter finger post-operatively, although again there wereas no		Formatted: Font color: Red
183	statistical differences between groups. Histologically proven dermal fibromatosis was not		Formatted: Font color: Red
184	related to the post-operative range of movement.		
185			
186	Complications were not different between groups although partial graft failure appeared to		
187	be more common amongst smokers (mean 20.0 vs. 1.25 pack years, p=0.050).		

Page 8 of 23

188			
189	During the study period, ten patients (9.7%) underwent two operations and one required four		
190	operations. After fasciectomy, six patients (143.6%) developed early recurrence of whom		Formatted: Font color: Red
191	four elected to undergo revision dermofasciectomy. There were no early recurrences in the		
192	dermofasciectomy group.		
193			
194	Table 3 shows the 29 patients who underwent dermofasciectomy for recurrent disease.		
195	Clinical assessment of their skin did not correlate with the histopathological diagnosis in 2		Formatted: Font color: Red
196	nine cases (31%). It is important to notice that when we clinically assessed the skin and felt		
197	it was involved, we were incorrect <u>4-four</u> times (<u>243.5%</u>), giving a positive predictive value of		Formatted: Font color: Red
198	776.5% However, when we felt the skin was not involved clinically we were incorrect 5-five		Formatted: Font color: Red
150			Formatted: Font color: Red
199	times (424.7%), giving a negative predictive value of 58.3%. In our experience, clinical		Formatted: Font color: Red
200	2	$\overline{\ }$	Formatted: Font color: Red
200			Formatted: Font color: Red
201			Formatted: Font color: Red
			Formatted: Font color. Red
202	Positive predictors of dermal fibromatosis included an occupation involving manual labour		
203	and the presence of palpable palmar nodules (Table 4).		

204

Page 9 of 23

DISCUSSION

206		
207	Dupuytren's disease is hypothesised to begin within the palmar aponeurosis and progress	
208	axially to infiltrate fascial bands investing deep structures as well as the overlying skin.	
209	Occult fibromatosis within the dermis may be an important factor in recurrent disease (Abe et	
210	al., 2004; Armstrong et al., 2000; Brotherston et al., 1994; Ebelin et al., 1991; Hall et al.,	
211	1997; Kelly and Varian, 1992; Ketchum and Hixson, 1987; Logan et al., 1985; McCann et al.,	
212	1993; Searle and Logan, 1992) and therefore many surgeons have suggested that when	
213	there is evidence of skin involvement, dermofasciectomy may better treat the disease	
214	burden. For this reason, dermofasciectomy plays an important role in patients with obviously	
215	involved skin or recurrent disease (Abe et al., 2004; Armstrong et al., 2000; Brotherston et	
216	al., 1994; Ebelin et al., 1991; Hall et al., 1997; Hueston, 1984; Kelly and Varian, 1992;	
217	Ketchum and Hixson, 1987; McCann et al., 1993; Tonkin et al., 1984). Despite this general	
218	consensus, there is limited histhopathological data on the rate of dermal involvement in	
219	Dupuytren's disease and the paramount challenge remains in the clinical identification of	
220	those patients with skin involvement. Consequently, it is very difficult to say who may benefit	
221	from fasciectomy or dermofasciectomy with respect to the risk of recurrence. Whilst we are	
222	not the first to suggest that Dupuytren's disease exists in the skin (Chen et al., 2009;	
223	McCann et al., 1993) and subcutaneous tissue (Hindocha et al., 2011; Iqbal et al., 2012), we	
224	have demonstrated the presence of dermal fibromatosis in patients with no clinical features	
225	of skin involvement. These findings represent a novel and interesting opportunity for further	
226	research.	
227		
228	The most thought-provoking finding of our study is the overall rate of dermal fibromatosis	
229	(61-2%). Let us also consider that this prevalence is likely to be an underestimation of the	
230	actual percentage of dermal infiltration because only a small piece of skin was excised	

231 (mean size 3x11 mm) and the method of specimen preparation for microscopic analysis is

232 likely to generate skip lesions. Therefore, we speculate that there is a substantially greater

Page 10 of 23

Formatted: Font color: Red

205

233	(sub-clinical) rate of skin infiltration than our study suggests. Furthermore, clinical
234	assessment for skin involvement does not seem to be entirely reliable as we found 22
235	patients who had histologically involved skin, but underwent primary fasciectomy because
236	the clinical assessment of their palmar skin was negative. This means that the occult skin
237	disease was undetected and untreated, thereby raising the question should these patients
238	have undergone primary dermofasciectomy? And if so, how can we identify these patients
239	with sub-clinical disease in their palmar skin? Again, we cannot answer this question and
240	can only speculate that pre-operative skin biopsy, with thorough microscopic analysis for
241	dermal disease, may be valuable in stratifying patients for particular interventions.
242	Additionally, skin biopsies for dermal involvement may be a useful variable in better
243	understanding the otherwise unpredictable pattern of recurrence in this condition.
244	
245	Histologically differentiating Dupuytren's fibromatosis from hypertrophic scarring is not
246	always possible in limited/small skin biopsies. The morphological features are similar
247	because the tissue shows increased cellularity and fibroblastic activity in both conditions.
248	However, hypertrophic scars usually feature thick bundles of collagen and do not form 'burnt
249	out' fibrotic nodules, which are frequently seen in late stage Dupuytren's disease. A potential
250	differentiating method is nuclear staining with beta-catenin, which is typically positive in
251	fibromatosis (Varallo et al., 2003). The diagnosis therefore relies heavily on overall
252	morphology. Conversely, one may argue that it is not necessary to distinguish between
253	dermal fibromatosis and excess scarring because the most important task is to excise all
254	fibrotic tissue which results in digital contracture, regardless of the cause. Indeed, our data
255	suggests that dermal fibromatosis was not associated to the severity of pre-operative flexion
256	contracture nor a contributory variable to the amount of angular deformity corrected through
257	surgery. Also, we have shown that by radically excising skin, fat, fascia, aponeurosis, scar
258	and pathological tissue through dermofasciectomy (Logan et al., 1985), we were able to
259	obtain a substantial greater improvement in range of motion. This gain in post-operative
260	finger motion is likely to be related to the greater original deformity and the amount of

Page 11 of 23

pathological tissue removed during dermofasciectomy. We are unable to comprehensively 261 262 explain why our dermofasciectomy patients achieved a straighter digit and suggest that this 263 is another topic to be further investigated. 264 265 Our total anaesthetic time for fasciectomy was longer than expected. Root-cause analysis 266 revealed complications including ineffective blocks requiring conversion to general 267 anaesthesia, difficult intubations and revision blocks for post-operative analgesia, which we do not believe are relevant to our outcomes. 268 269 Anecdotally, some surgeons discourage the use of dermofasciectomy due to the alleged risk 270 271 of graft loss, perceived surgical complexity and longer rehabilitation. To-date no studies have 272 demonstrated a statistically or clinically significant risk of graft loss (Brotherston et al., 1994; Hall et al., 1997; Searle and Logan, 1992; Tonkin et al., 1984) and our series supports the 273 concept that dermofasciectomy and full thickness skin grafting for Dupuytren's disease is a 274 safe, effective and beneficial procedure (Armstrong et al., 2000; Brotherston et al., 1994; 275 276 Hall et al., 1997; Searle and Logan, 1992; Tonkin et al., 1984). Anecdotally, these patients 277 take longer to return to their normal daily activities and this should be balanced against a 278 potentially lower rate of recurrence and revision surgery - a hypothesis, which certainly deserves more investigation (Rodrigues et al., 2014). 279 280 281 Surgery for Dupuytren's disease increases hand morbidity and may subtly increase mortality too (Wilbrand et al., 2005). In the UK, the annual cost of treating Dupuytren's disease 282 exceeds £41 million (Gerber et al., 2011). In the USA, disability and treatments for 283 284 Dupuytren's disease account for significant losses to the economy as well as adverse effects on health insurance (Macaulay et al., 2012). Therefore, we believe that the primary 285 286 procedure aimed at treating this condition should be effective for the longest possible period, 287 particularly for younger patients at risk of early recurrence. As we have shown that dermal disease is sub-clinically present in the majority of patients, we suggest that greater research 288

Page 12 of 23

289	attention should be paid to the role of the palmar skin (specifically whether by surveying the
290	skin through pre-operative biopsy and/or excision of clinically involved skin) we may reduce
291	the disease burden and so, the risk of recurrence. Pre-operative skin biopsy would be
292	particularly useful in understanding whether a heavy dermal disease burden relates to early
293	recurrence and whilst our study is underpowered to answer this question, future researchers
294	may wish to consider the matter. The balance between surgical morbidity, long-term
295	outcomes, recurrence and cost is still unclear and histological detection of skin involvement
296	may be an important piece of the puzzle.
297	
298	We must acknowledge two substantial limitations to our study. This was originally designed
299	as an audit of surgical outcomes and the finding of a high rate of skin involvement generated
300	the idea for this paper. Therefore, we performed a generous number of statistical analyses
301	(which some may call 'data mining') and fully accept the inherent risk of generating type 4
302	one errors. Consequently, we have attempted to adjust our cohort with the family wise error
303	rate, which has rendered most our findings (albeit interesting), non-significant. Further, at
304	baseline we excluded some patients which would have formed a potentially interesting
305	subgroup (particularly those with multi-digit disease) and we are unable to correct this
306	oversight. We hope that future researchers will take stock of our limitations and design
307	studies to better investigate this fascinating and novel topic.
308	

Formatted: Font color: Red

Page 13 of 23

309 CONCLUSIONS 310 We have demonstrated that dermal fibromatosis exists in the absence of clinical features of 311 skin involvement. We have also shown that dermal invasion by Dupuytren's disease exists in 312 the majority of patients, in our series. Therefore, we suggest that the skin may have a 313 314 greater role in both the development and propagation of Dupuytren's disease than previously 315 thought. This study may be a useful basis for future research on skin involvement in Dupuytren's disease, its role in the stratification of patients for surgery, and its association 316 317 with long-term outcomes and recurrence. 318 319 **Acknowledgements** We owe thanks to: Mr Andrew Logan (Retired Consultant Plastic & Reconstructive Surgeon) 320 for kindly reviewing the final manuscript and our dedicated Hand Physiotherapists Sarah 321 322 Hazelden and Bhavana Jha (of the Norfolk and Norwich University Hospital NHS Foundation 323 Trust) for their assistance in data collection. 324 325 Conflict of interest Formatted: Underline None declared. 326 327 328 Funding Formatted: Underline 329 This research received no specific grant from any funding agency in the public, commercial, Formatted: Font: (Default) Arial, 11 pt 330 or not-for-profit sectors. 331 332 Ethical approval 333 This was designed and conducted as a prospective audit and so formal research and ethic 334 committee approval was deemed unnecessary by the Chair of the Norfolk and Norwich Research and Ethics Committee. 335 336

Page 14 of 23

337 References

Abe Y, Rokkaku T, Ofuchi S, et al. An objective method to evaluate the risk of recurrence 338 and extension of Dupuytren's disease. J Hand Surg Br. 2004, 29: 427-30. 339 Armstrong JR, Hurren JS, Logan AM. Dermofasciectomy in the management of 340 Dupuytren's disease. J Bone Joint Surg Br. 2000, 82: 90-4. 341 342 Betz N, Ott OJ, Adamietz B, et al. Radiotherapy in early-stage Dupuytren's contracture. 343 Long-term results after 13 years. Strahlenther Onkol. 2010, 186: 82-90. Brotherston TM, Balakrishnan C, Milner RH, et al. Long term follow-up of 344 dermofasciectomy for Dupuytren's contracture. Br J Plast Surg. 1994, 47: 440-3. 345 Chen W, Zhou H, Pan ZJ, et al. The role of skin and subcutaneous tissues in Dupuytren's 346 347 contracture: an electron microscopic observation. Orthopaedic surgery. 2009, 1: 216-21. Eaton C. Evidence-based medicine: Dupuytren contracture. Plast Reconstr Surg. 2014, 348 133: 1241-51. 349 Ebelin M, Leviet D, Auclair E, et al. The treatment of recurrent Dupuytren's disease by 350 scalar incision and firebreak graft. Ann Chir Plast Esthet. 1991, 36: 26-30. 351 352 Ellis B, Bruton A. A study to compare the reliability of composite finger flexion with 353 goniometry for measurement of range of motion in the hand. Clin Rehabil. 2002, 16: 562-70. 354 Gerber RA, Perry R, Thompson R, et al. Dupuytren's contracture: a retrospective database analysis to assess clinical management and costs in England. BMC Musculoskelet 355 Disord. 2011, 12: 73. 356 Hall PN, Fitzgerald A, Sterne GD, et al. Skin replacement in Dupuytren's disease. J Hand 357 Surg Br. 1997, 22: 193-7. 358 Harden RN, Bruehl S, Stanton-Hicks M, et al. Proposed new diagnostic criteria for 359 360 complex regional pain syndrome. Pain Med. 2007, 8: 326-31. Hindocha S, Igbal SA, Farhatullah S, et al. Characterization of stem cells in Dupuytren's 361 362 disease. Br J Surg. 2011, 98: 308-15. 363 Hueston JT. Limited Fasciectomy For Dupuytren's Contracture. Plast Reconstr Surg Transplant Bull. 1961, 27: 569-85. 364

Page 15 of 23

Hueston JT. Digital Wolfe grafts in recurrent Dupuytren's contracture. Plast Reconstr
 Surg. 1962, 29: 342-4.

Hueston JT. The control of recurrent Dupuytren's contracture by skin replacement. Brit J
Plast Surg. 1969, 22: 152-6.

Hueston JT. Dermatofasciectomy for Dupuytren's disease. Bull Hosp Jt Dis Orthop Inst.
1984, 44: 224-32.

Iqbal SA, Manning C, Syed F, et al. Identification of mesenchymal stem cells in
 perinodular fat and skin in Dupuytren's disease: a potential source of myofibroblasts with

implications for pathogenesis and therapy. Stem Cell Dev. 2012, 21: 609-22.

Jerosch-Herold C, Shepstone L, Chojnowski AJ, et al. Night-time splinting after fasciectomy or dermo-fasciectomy for Dupuytren's contracture: a pragmatic, multi-centre,

376 randomised controlled trial. BMC Musculoskelet Disord. 2011, 12: 136.

Kan HJ, Verrijp FW, Huisstede BM, et al. The consequences of different definitions for
recurrence of Dupuytren's disease. J Plast Reconstr Aesthet Surg. 2013, 66: 95-103.

Kelly C, Varian J. Dermofasciectomy: a long term review. Ann Chir Main Memb Super.1992, 11: 381-2.

Kemler MA, Houpt P, van der Horst CM. A pilot study assessing the effectiveness of
postoperative splinting after limited fasciectomy for Dupuytren's disease. J Hand Surg Euro
Vol. 2012, 37: 733-7.

Ketchum LD, Hixson FP. Dermofasciectomy and full thickness grafts in the treatment of
 Dupuytren's contracture. J Hand Surg Am. 1987, 12: 659-64.

Lanting R, Broekstra DC, Werker PM, et al. A systematic review and meta-analysis on the prevalence of Dupuytren disease in the general population of Western countries. Plast Reconstr Surg. 2014, 133: 593-603.

Logan AM, Brown HG, Lewis-Smith P. Radical digital dermofasciectomy in Dupuytren's
disease. J Hand Surg Br. 1985, 10: 353-7.

Macaulay D, Ivanova J, Birnbaum H, et al. Direct and indirect costs associated with Dupuytren's contracture. J Med Econ. 2012, 15: 664-71.

Page 16 of 23

McCann BG, Logan A, Belcher H, et al. The presence of myofibroblasts in the dermis of patients with Dupuytren's contracture. A possible source for recurrence. J Hand Surg Br. 1993, 18: 656-61.

Mehta S, Belcher HJ. A single-centre cost comparison analysis of collagenase injection versus surgical fasciectomy for Dupuytren's contracture of the hand. J Plast Reconstr Aesthet Surg. 2014, 67: 368-72.

Mickelson DT, Noland SS, Watt AJ, et al. Prospective Randomized Controlled Trial Comparing 1- Versus 7-Day Manipulation Following Collagenase Injection for Dupuytren Contracture. J Hand Surg Am. 2014, 39: 1933-41.

402 Rodrigues JN, Zhang W, Scammell BE, et al. What patients want from the treatment of

Dupuytren's disease -- is the Unite Rhumatologique des Affections de la Main (URAM) scale
relevant? J Hand Surg Eur Vol. 2014, 40: 150-4.

Searle AE, Logan AM. A mid term review of the results of dermofasciectomy for
Dupuytren's disease. Ann Chir Main Memb Super. 1992, 11: 375-80.

Tonkin MA, Burke FD, Varian JP. Dupuytren's contracture: A comparative study of fasciectomy and dermatofasciectomy. J Hand Surg Br. 1984, 9: 156-62.

Townley WA, Baker R, Shappard N, et al. Dupuytren's contracture unfolded. BMJ. 2006,
332: 397-400.

411 van Rijssen AL, ter Linden H, Werker PM. Five-year results of a randomized clinical trial

on treatment in Dupuytren's disease: percutaneous needle fasciotomy versus limitedfasciectomy. Plast Reconstr Surg. 2012, 129: 469-77.

Varallo VM, Gan BS, Seney S, et al. Beta-catenin expression in Dupuytren's disease:
potential role for cell-matrix interactions in modulating beta-catenin levels in vivo and in vitro.
Oncogene. 2003, 22: 3680-4.

417 Verheyden JR. Early outcomes of a sequential series of 144 patients with Dupuytren's

418 contracture treated by collagenase injection using an increased dose, multi-cord technique. J

419 Hand Surg Eur Vol. 2015, 40: 133-140.

Page 17 of 23

- 420 Werker PM, Pess GM, van Rijssen AL, et al. Correction of contracture and recurrence
- 421 rates of Dupuytren contracture following invasive treatment: the importance of clear
- 422 definitions. J Hand Surg Am. 2012, 37: 2095-105.
- 423 Wilbrand S, Ekbom A, Gerdin B. A cohort study linked increased mortality in patients
- treated surgically for Dupuytren's contracture. J Clin Epidemiol. 2005, 58: 68-74.

425 Figure Legends

- 426
- 427 Figure 1. A flow diagram of patient attrition.
- 428

- 432 Figure 2.
- 433 An H&E stained section of skin overlying the proximal phalanx of the right little finger from a
- 434 patient who underwent primary dermofasciectomy for clinical involved skin. Upper panel: an
- 435 overview of the skin involved by fibromatosis showing destruction of the dermal adnexae and
- 436 distortion of the normal dermal achitecture (low power). Middle panel: Dermal fibromatosis

437	reaching the mid-reticular dermis (medium power). Lower panel: A (high power) close up of	
438	the active area of Dupuytren's disease.	
439		
440		
441	Figure 3.	
442	Upper row: Pre-operative photographs of a 68 year-old right-handed man with Dupuytren's	
443	disease in the left little finger, involving the overlying skin. The PIPJ demonstrated 57	
444	degrees of fixed flexion deformity. Lower row: Photographs one4-year post primary	Formatted: Font color: Red
445	dermofasciectomy and full thickness skin grafting, showing a well-healed graft and corrected	
446	deformity.	
447		

Page **19** of **23**

<u>Tables</u> 448

449

Table 1. Baseline (Characteristics	Fasciectomy (N=44)	Dermofasciectomy & FTSG (N=59)	p-value	
	Mean age (SD)	65.1 (<mark>9.03</mark>)	66.2 (<mark>8.10</mark>)	0.509	Formatted: Font color: Red
					Formatted: Font color: Red
	Men	34 (<mark>33.0</mark>)	51 (<u>50</u> 4 9.5)		Formatted: Font color: Red
Gender (%)	Women	10 (9.7)	8 (7.8)	0.226	Formatted: Font color: Red
	Right	36 (<mark>35.0</mark>)	58 (<mark>56.3</mark>)		Formatted: Font color: Red
landedness (%)	Left	8 (7.7)	1 (1.0)	0.004	Formatted: Font color: Red
Mar	nual Worker (%)	16 (<mark>1<u>6</u>5.5</mark>)	17 (<u>17</u> 6.5)	0.371	Formatted: Font color: Red
					Formatted: Font color: Red
Fa	mily History (%)	22 (<mark>21.4</mark>)	21 (<mark>20.4</mark>)	0.142	Formatted: Font color: Red
					Formatted: Font color: Red
	Cords (%)	38 (<mark>3<u>7</u>6.9</mark>)	54 (<mark>52.4</mark>)	1.000	Formatted: Font color: Red
					Formatted: Font color: Red
	Nodules (%)	20 (<mark>19.4</mark>)	22 (<mark>21</mark> .4)	0.351	Formatted: Font color: Red
				<u> </u>	Formatted: Font color: Red
		/	17 (176 5)	1	Formattada Fortalam Rad

451

I

Table 2. Outcomes		Fasciectomy (N=44)	Dermofasciectomy & FTSG (N=59)	p-value	
Skin histologica	ally involved (%)	22 (<mark>50.0</mark>)	41 (<u>70<mark>69.5</mark></u>)	0.041	Formatted: Font color: Red
Median pre-	MCPJs	25 (20-37)	39 (30-51)	0.015	Formatted: Font color: Red
operative flexion contractures in	PIPJs	49 (26-64)	70 (56-90)	0.003	
degrees (IQR) Median post- operative flexion contractures in	DIPJs	1 (0-2)	30 (5-54)	0.190	
	MCPJs	0 (0-5)	0 (0-10)	0.413	
	PIPJs	8 (0-20)	19 (0-33)	0.493	
degrees (IQR)	DIPJs	0 (0-14)	0 (0-0)	1.000	
	Infection	2 (<mark>4.5</mark> 4)	0 (0)	0.180	Formatted: Font color: Red
	CRPS	1 (<mark>2.<u>3</u>27</mark>)	1 (<mark>1.<u>7</u>69</mark>)	1.000	Formatted: Font color: Red
					Formatted: Font color: Red
Complications (%)	Recurrence	3 (<mark>6.8-</mark> 2)	2 (<mark>3.<u>4</u>39</mark>)	0.649	Formatted: Font color: Red
	Total graft failure	/	0 (0)	/	Formatted: Font color: Red
	Partial graft failure	/	9 (<mark>15.3</mark>)	1	Formatted: Font color: Red

51 (24-96)

0.117

453

Median follow-up in weeks (Range)

1

454

455

Page 21 of 23

39 (16-72)

	Table 3. Dermofasciectomy _		Histological Assessment of the Skin				
	for Recurren	t Contracture	Involved	Not Involved	p-value		
	Clinical	Involved	13 (<mark>4<u>5</u>4.8</mark>)	4 (<u>1314.8</u>)			Formatted: Font color: Red
I	Assessment of the Skin				0.119		Formatted: Font color: Red
	(%)	Not involved	5 (<mark>17.2)</mark>	7 (<mark>242</mark>)			Formatted: Font color: Red
	ζ,						Formatted: Font color: Red

Page 22 of 23

|--|

	Table 4. Positive	Table 4. Positive Predictors of Skin Involvement						
	Risk Factor	OR	p-value	95% CI				
	Manual Worker	2.86	0.017	1.19, 6.86				
	Palmar Nodules	4.63	0.001	1.80, 11.9				
460								

461

Page 23 of 23