354 research outputs found

    The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age

    Get PDF
    The measurement of biological age as opposed to chronological age is important to allow the study of factors that are responsible for the heterogeneity in the decline in health and function ability among individuals during aging. Various measures of biological aging have been proposed. Frailty indices based on health deficits in diverse body systems have been well studied, and we have documented the use of a frailty index (FI(34)) composed of 34 health items, for measuring biological age. A different approach is based on leukocyte DNA methylation. It has been termed DNA methylation age, and derivatives of this metric called age acceleration difference and age acceleration residual have also been employed. Any useful measure of biological age must predict survival better than chronological age does. Meta-analyses indicate that age acceleration difference and age acceleration residual are significant predictors of mortality, qualifying them as indicators of biological age. In this article, we compared the measures based on DNA methylation with FI(34). Using a well-studied cohort, we assessed the efficiency of these measures side by side in predicting mortality. In the presence of chronological age as a covariate, FI(34) was a significant predictor of mortality, whereas none of the DNA methylation age-based metrics were. The outperformance of FI(34) over DNA methylation age measures was apparent when FI(34) and each of the DNA methylation age measures were used together as explanatory variables, along with chronological age: FI(34) remained significant but the DNA methylation measures did not. These results indicate that FI(34) is a robust predictor of biological age, while these DNA methylation measures are largely a statistical reflection of the passage of chronological time

    Personalized Pathway Enrichment Map of Putative Cancer Genes from Next Generation Sequencing Data

    Get PDF
    BACKGROUND: Pathway analysis of a set of genes represents an important area in large-scale omic data analysis. However, the application of traditional pathway enrichment methods to next-generation sequencing (NGS) data is prone to several potential biases, including genomic/genetic factors (e.g., the particular disease and gene length) and environmental factors (e.g., personal life-style and frequency and dosage of exposure to mutagens). Therefore, novel methods are urgently needed for these new data types, especially for individual-specific genome data. METHODOLOGY: In this study, we proposed a novel method for the pathway analysis of NGS mutation data by explicitly taking into account the gene-wise mutation rate. We estimated the gene-wise mutation rate based on the individual-specific background mutation rate along with the gene length. Taking the mutation rate as a weight for each gene, our weighted resampling strategy builds the null distribution for each pathway while matching the gene length patterns. The empirical P value obtained then provides an adjusted statistical evaluation. PRINCIPAL FINDINGS/CONCLUSIONS: We demonstrated our weighted resampling method to a lung adenocarcinomas dataset and a glioblastoma dataset, and compared it to other widely applied methods. By explicitly adjusting gene-length, the weighted resampling method performs as well as the standard methods for significant pathways with strong evidence. Importantly, our method could effectively reject many marginally significant pathways detected by standard methods, including several long-gene-based, cancer-unrelated pathways. We further demonstrated that by reducing such biases, pathway crosstalk for each individual and pathway co-mutation map across multiple individuals can be objectively explored and evaluated. This method performs pathway analysis in a sample-centered fashion, and provides an alternative way for accurate analysis of cancer-personalized genomes. It can be extended to other types of genomic data (genotyping and methylation) that have similar bias problems

    Maternal fish and shellfish intake and pregnancy outcomes: A prospective cohort study in Brittany, France

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recommendations about risks and benefits of seafood intake during pregnancy have been published in the last decade, but the specific health effects of the different categories of seafood remain unknown. Fish and shellfish may differ according to their fatty acid content and their concentration of chemical pollutants and toxins. Not taking these particularities into account may result in underestimating of both the positive and negative effects of seafood on birth outcomes and partly explains inconsistent results on the subject.</p> <p>Methods</p> <p>In the PELAGIE cohort study, including 2398 pregnant women from Brittany, we fit multiple linear and logistic regression models to examine associations of fish (salt-water fish only) and shellfish intake before pregnancy with length of gestation, birthweight, and risks of preterm births, low birthweight or small-for-gestational-age (SGA) babies.</p> <p>Results</p> <p>When fish and shellfish consumptions were considered simultaneously, we observed a decrease in the risk of SGA birth with increasing frequency of fish intake: OR = 0.57 (95%CI: 0.31 to 1.05) for women eating fish twice a week or more compared with those eating it less than once a month. The risk of SGA birth was significantly higher among women eating shellfish twice a week or more than among those eating it less than once a month: OR = 2.14 (95%CI: 1.13 to 4.07). Each additional monthly meal including fish was significantly related to an increase in gestational length of 0.02 week (95%CI: 0.002 to 0.035). No association was observed with birthweight or preterm birth.</p> <p>Conclusion</p> <p>These results suggest that different categories of seafood may be differently associated with birth outcomes, fish consumption with increased length of gestation and shellfish consumption with decreased fetal growth.</p

    Search for the standard model Higgs boson at LEP

    Get PDF

    Parallel Germline Infiltration of a Lentivirus in Two Malagasy Lemurs

    Get PDF
    Retroviruses normally infect the somatic cells of their host and are transmitted horizontally, i.e., in an exogenous way. Occasionally, however, some retroviruses can also infect and integrate into the genome of germ cells, which may allow for their vertical inheritance and fixation in a given species; a process known as endogenization. Lentiviruses, a group of mammalian retroviruses that includes HIV, are known to infect primates, ruminants, horses, and cats. Unlike many other retroviruses, these viruses have not been demonstrably successful at germline infiltration. Here, we report on the discovery of endogenous lentiviral insertions in seven species of Malagasy lemurs from two different genera—Cheirogaleus and Microcebus. Combining molecular clock analyses and cross-species screening of orthologous insertions, we show that the presence of this endogenous lentivirus in six species of Microcebus is the result of one endogenization event that occurred about 4.2 million years ago. In addition, we demonstrate that this lentivirus independently infiltrated the germline of Cheirogaleus and that the two endogenization events occurred quasi-simultaneously. Using multiple proviral copies, we derive and characterize an apparently full length and intact consensus for this lentivirus. These results provide evidence that lentiviruses have repeatedly infiltrated the germline of prosimian species and that primates have been exposed to lentiviruses for a much longer time than what can be inferred based on sequence comparison of circulating lentiviruses. The study sets the stage for an unprecedented opportunity to reconstruct an ancestral primate lentivirus and thereby advance our knowledge of host–virus interactions

    Longitudinal study of DNA methylation during the first 5 years of life.

    Get PDF
    Background: Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. Methods: The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using Illumina® Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. Results: DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. Conclusions: Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention

    DNA methylation levels are highly correlated between pooled samples and averaged values when analysed using the Infinium HumanMethylation450 BeadChip array.

    Get PDF
    BACKGROUND: DNA methylation is a heritable and stable epigenetic mark implicated in complex human traits. Epigenome-wide association studies (EWAS) using array-based technology are becoming widely used to identify differentially methylated sites associated with complex diseases. EWAS studies require large sample sizes to detect small effects, which increases project costs. In the present study we propose to pool DNA samples in methylation array studies as an affordable and accurate alternative to individual samples studies, in order to reduce economic costs or when low amounts of DNA are available. For this study, 20 individual DNA samples and 4 pooled DNA samples were analysed using the Illumina Infinium HumanMethylation450 BeadChip array to evaluate the efficiency of the pooling approach in EWAS studies. Statistical power calculations were also performed to discover the minimum sample size needed for the pooling strategy in EWAS. RESULTS: A total of 485,577 CpG sites across the whole genome were assessed. Comparison of methylation levels of all CpG sites between individual samples and their related pooled samples revealed highly significant correlations (rho > 0.99, p-val  0.98, p-val < 10(-16)). Also, it was calculated that n = 43 is the minimum sample size required to achieve a 95 % statistical power and a 10(-06) significance level in EWAS, when using a DNA pool strategy. CONCLUSIONS: DNA pooling strategies seems to accurately provide estimations of averaged DNA methylation state using array based EWAS studies. This type of approach can be applied to the assessment of disease phenotypes, reducing the amount of DNA required and the cost of large-scale epigenetic analyses

    Overexpression of Mitochondrial Uncoupling Protein 2 Inhibits Inflammatory Cytokines and Activates Cell Survival Factors after Cerebral Ischemia

    Get PDF
    Mitochondria play a critical role in cell survival and death after cerebral ischemia. Uncoupling proteins (UCPs) are inner mitochondrial membrane proteins that disperse the mitochondrial proton gradient by translocating H+ across the inner membrane in order to stabilize the inner mitochondrial membrane potential (ΔΨm) and reduce the formation of reactive oxygen species. Previous studies have demonstrated that mice transgenically overexpressing UCP2 (UCP2 Tg) in the brain are protected from cerebral ischemia, traumatic brain injury and epileptic challenges. This study seeks to clarify the mechanisms responsible for neuroprotection after transient focal ischemia. Our hypothesis is that UCP2 is neuroprotective by suppressing innate inflammation and regulating cell cycle mediators. PCR gene arrays and protein arrays were used to determine mechanisms of damage and protection after transient focal ischemia. Our results showed that ischemia increased the expression of inflammatory genes and suppressed the expression of anti-apoptotic and cell cycle genes. Overexpression of UCP2 blunted the ischemia-induced increase in IL-6 and decrease in Bcl2. Further, UCP2 increased the expression of cell cycle genes and protein levels of phospho-AKT, PKC and MEK after ischemia. It is concluded that the neuroprotective effects of UCP2 against ischemic brain injury are associated with inhibition of pro-inflammatory cytokines and activation of cell survival factors

    DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird

    Get PDF
    © 2017 De Paoli-Iseppi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Most seabirds do not have any outward identifiers of their chronological age, so estimation of seabird population age structure generally requires expensive, long-term banding studies. We investigated the potential to use a molecular age biomarker to estimate age in short-tailed shearwaters (Ardenna tenuirostris). We quantified DNA methylation in several A. tenuirostris genes that have shown age-related methylation changes in mammals. In birds ranging from chicks to 21 years of age, bisulphite treated blood and feather DNA was sequenced and methylation levels analysed in 67 CpG sites in 13 target gene regions. From blood samples, five of the top relationships with age were identified in KCNC3 loci (CpG66: R2 = 0.325, p = 0.019). In feather samples ELOVL2 (CpG42: R2 = 0.285, p = 0.00048) and EDARADD (CpG46: R2 = 0.168, p = 0.0067) were also weakly correlated with age. However, the majority of markers had no clear association with age (of 131 comparisons only 12 had a p-value &lt; 0.05) and statistical analysis using a penalised lasso approach did not produce an accurate ageing model. Our data indicate that some age-related signatures identified in orthologous mammalian genes are not conserved in the long-lived short tailed shearwater. Alternative molecular approaches will be required to identify a reliable biomarker of chronological age in these seabirds

    Personal Genome Project UK (PGP-UK): a research and citizen science hybrid project in support of personalized medicine

    Get PDF
    Background: Molecular analyses such as whole-genome sequencing have become routine and are expected to be transformational for future healthcare and lifestyle decisions. Population-wide implementation of such analyses is, however, not without challenges, and multiple studies are ongoing to identify what these are and explore how they can be addressed. Methods: Defined as a research project, the Personal Genome Project UK (PGP-UK) is part of the global PGP network and focuses on open data sharing and citizen science to advance and accelerate personalized genomics and medicine. Results: Here we report our findings on using an open consent recruitment protocol, active participant involvement, open access release of personal genome, methylome and transcriptome data and associated analyses, including 47 new variants predicted to affect gene function and innovative reports based on the analysis of genetic and epigenetic variants. For this pilot study, we recruited 10 participants willing to actively engage as citizen scientists with the project. In addition, we introduce Genome Donation as a novel mechanism for openly sharing previously restricted data and discuss the first three donations received. Lastly, we present GenoME, a free, open-source educational app suitable for the lay public to allow exploration of personal genomes. Conclusions: Our findings demonstrate that citizen science-based approaches like PGP-UK have an important role to play in the public awareness, acceptance and implementation of genomics and personalized medicine
    corecore