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Abstract The measurement of biological age as op-
posed to chronological age is important to allow the
study of factors that are responsible for the heteroge-
neity in the decline in health and function ability
among individuals during aging. Various measures
of biological aging have been proposed. Frailty indi-
ces based on health deficits in diverse body systems
have been well studied, and we have documented the
use of a frailty index (Flz4) composed of 34 health
items, for measuring biological age. A different ap-
proach is based on leukocyte DNA methylation. It
has been termed DNA methylation age, and deriva-
tives of this metric called age acceleration difference
and age acceleration residual have also been
employed. Any useful measure of biological age
must predict survival better than chronological age
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does. Meta-analyses indicate that age acceleration
difference and age acceleration residual are signifi-
cant predictors of mortality, qualifying them as indi-
cators of biological age. In this article, we compared
the measures based on DNA methylation with Fls,.
Using a well-studied cohort, we assessed the efficien-
cy of these measures side by side in predicting mor-
tality. In the presence of chronological age as a co-
variate, Fl34 was a significant predictor of mortality,
whereas none of the DNA methylation age-based
metrics were. The outperformance of Fl;4 over
DNA methylation age measures was apparent when
FI34 and each of the DNA methylation age measures
were used together as explanatory variables, along
with chronological age: FI;4 remained significant but
the DNA methylation measures did not. These results
indicate that Fls4 is a robust predictor of biological
age, while these DNA methylation measures are
largely a statistical reflection of the passage of chro-
nological time.

Keywords Aging - Biological age - Frailty- DNA
methylation - Mortality

Introduction
Degenerative biological changes and functional de-

cline occur with advancing age, increasing the inci-
dence of disorders, diseases, and mortality. Thus,
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biological aging proceeds in tandem with chrono-
logical age. However, the pace and extent of age
changes vary among individuals at any given chro-
nological age (Mitnitski et al. 2002a; Karasik et al.
2005). Thus, the term biological aging has been
developed to conceptualize the fact that individuals
differ in their manifestation of age changes as they
age chronologically. The heterogeneity in biological
aging among chronological age peers necessitates a
reliable measure of biological or functional age sep-
arate from chronological age.

A good measure of biological age should reflect
age-related changes occurring at various biological
levels. One of the best characterized measures of
biological age is the frailty (or deficit) index
(Rockwood et al. 1994, 1999; Fried et al. 2001;
Mitnitski et al. 2001; Kulminski et al. 2007a, b).
This composite index is expressed as the proportion
of health deficits accumulated by individuals among
a set of health items surveyed throughout the body,
and it can be calculated at any given chronological
age (Mitnitski et al. 2001). The health items
(variables) include various signs, symptoms, labora-
tory measurements, disabilities, and diseases. A
frailty index calculated from about 20 to 100 health
variables gives reliable and comparable results
(Mitnitski et al. 2006; Rockwood et al. 2007;
Rockwood and Mitnitski 2007; Searle et al. 2008).
Frailty indexes have been extensively examined and
used in various studies (Mitnitski et al. 2001, 2002a,
b; Kulminski et al. 2007a, b; Matteini et al. 2010).

We developed a frailty index called Fl3, (Kim
et al. 2013; Kim and Jazwinski 2015). Composed
of 34 common health and function variables, Flzy4
increases exponentially with age, indicating declin-
ing health and function ability. The rate of increase
accelerates approximately 2~3 % annually, and the
rate of increase and the pattern of aging displayed
by the hierarchical clustering of the component var-
iables differ among offspring of long-lived versus
short-lived parents (Kim et al. 2013), which indi-
cates a genetic basis of the frailty index. Indeed, an
estimate of the heritability (narrow sense) of Fly is
relatively high (0.39). A survival analysis indicates
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that Fl34 predicts mortality better than does chrono-
logical age (Kim et al. 2013). This is a critical
determination. Frailty and deficit indices, such as
Fl34, increase with chronological age. Thus, they
could simply be a surrogate for the passage of cal-
endar time. The fact that Fl34 predicts mortality/
survival better than does the simple passage of time
indicates that it is more than a naive chronometer.
Rather, it is a metric of biological age, a complex
and intrinsic feature of an organism.

Physiologic factors associated with Fl34 have
been identified. Elevated levels of resting metabolic
rate are linked to higher Fl34 scores in nonagenar-
ians, indicating an increased energy demand for
basic body functioning with declining health (Kim
et al. 2014). This association of energy metabolism
with healthy aging of the oldest old has various
underlying factors that operate in a gender-specific
manner (Kim et al. 2016a, b). In female nonagenar-
ians, fat mass and fat-free mass are important con-
tributors to healthy aging; in male nonagenarians,
however, tissue quality rather than body composi-
tion is important. In addition, genetic factors that are
associated with Fl;, have been identified, which
include UCP2 and UCP3, in females, and XRCCG6,
and LASSI, in males. Also, non-coding genomic
regions at 12q13-14 that appear to have regulatory
function are related to healthy aging (Kim et al.
2015). Thus, Fl34 has been useful in identifying both
genetic and phenotypic factors related to healthy
aging.

A different type of age measure was proposed
based on leukocyte DNA methylation. DNA methyl-
ation levels at many CpG sites in the genome are
correlated with chronological age (Fraga et al. 2005;
Rakyan et al. 2010; Bocklandt et al. 2011; Koch and
Wagner 2011; Lin et al. 2016), and subsets of such
CpG sites have been used in epigenetic models of
aging. Hannum et al. obtained a “predicted age” from
DNA methylation levels at 71 CpG sites and calcu-
lated an “apparent methylomic aging rate (AMAR)”
for each individual by dividing the predicted age by
the chronological age (Hannum et al. 2013). AMAR
greater than 1 was interpreted to mean “fast aging,”
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whereas AMAR less than 1 to mean “slow aging.”
Similarly, Horvath selected 353 CpG sites in which
DNA methylation levels are highly correlated with
chronological age (Horvath 2013). He transformed
subjects’ chronological ages (1 and 2 below), used a
linear regression to describe the relationship between

the transformed age and the DNA methylation levels
of the 353 CpG sites that are highly correlated with
chronological age “weighted” by their regression
coefficients to maximize the overall relationship (3),
and then took the “inverse” of this linear regression
to calculate the DNAmAge of each subject (4):

F(age) = log(age + 1)—log(adult age + 1), if age <adult age (= 20) (1)
F(age) = (age—adult age)/(adult age + 1), if age> adult age (= 20) (@)
F(age) = by + b1CpG, + b,CpG,...b353CpGys5 + error (3)
DNAmAge= the “inverse” of the function F in (3) (4)

Not surprisingly based on its dependence on chrono-
logical age, the DNAmAge is an excellent correlate of
chronological age. Indeed, it is almost as accurate as the
age on drivers’ licenses. Subsequently, the potential of
DNAmAge-derived measures as indicators of biological
age have been explored (Horvath et al. 2015; Marioni
et al. 2015; Breitling et al. 2016; Chen et al. 2016;
Christiansen et al. 2016; Perna et al. 2016). One of them,
AgeAccelerationDiff (AgeDiff hereafter), is the differ-
ence between DNAmAge and chronological age.
AgeDiff was associated with mortality (Marioni et al.
2015; Christiansen et al. 2016; Perna et al. 2016). It was
also associated with a frailty index similar to our Flzy4
but having a much greater emphasis on activities of
daily living and a substantially lesser focus on cognitive
function (Breitling et al. 2016). Likewise, the residual of
the linear regression of DNAmAge on chronological
age, AgeAccelerationResidual (AgeResid hereafter),
was associated with longevity and mortality (Horvath
et al. 2015; Chen et al. 2016). These findings indicate
that these DNAmAge-derived measures may represent
biological age.

In this article, we compared DNAmAge measures
with Fl34 side by side and assessed the effectiveness of
each of these measures in predicting mortality. Our
results indicate that Fl;4 uniformly outperforms the
DNAmAge measures.

Materials and methods
Subjects and health data

Subjects in this study are 262 unrelated individuals
randomly selected from the Louisiana Healthy Aging
Study cohort (Table 1). Age was based on documentary
evidence supported by demographic questionnaires.
Only Caucasians, inferred genetically, were included in
data analyses to avoid population confounding
(Jazwinski et al. 2010). Details of data collection and
calculation and characterization of Fl;4 were described
elsewhere (Kim et al. 2013). All participants provided
informed consent according to the protocol approved by
the respective Institutional Review Boards.

DNA methylation data and analysis

Genomic DNA was isolated from blood specimens, and
500 ng of each genomic DNA sample was treated with
bisulfite using the EZ-96 DNA methylation Kit (Zymo
Research). DNA methylation data were obtained using
the Infinium HumanMethylation450K BeadChip Kit
(Illumina) at the University of Utah Genomics Core
Facility. Data preprocessing and quality control were
done using the R package RnBeads (Assenov et al.
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Table 1 Summary statistics of the study sample (N = 262; 206 deceased)

Measure Group Range Mean + SD Male vs. female®

Age All (262) 60~103 86+ 10 P=028
Male (103) 60~99 85+ 11
Female (159) 60~103 87+9

Fls4 All 0.0097~0.49 0.22 +0.092 P=52e5
Male 0.0097~0.45 0.19 +0.085
Female 0.032~0.49 0.23 £0.091

DNAmAge All 32~110 78 +£12 P=045
Male 43~110 78 £13
Female 32~107 78 £12

AgeDiff All —41~29 -8+ 10 P =0.0025
Male —41~19 -6+10
Female —41~29 -9+10

AgeResid All -36~36 0+10 P =0.0086
Male -31~28 1.8£10
Female —36~36 -12+9

SD standard deviation

#Wilcoxon rank sum tests between the two gender groups

2014). DNA methylation probes with the detection P
value greater 0.05 were excluded from beta value cal-
culation. DNA methylation age (“DNAmAge”) of each
subject was obtained using the Online Age Calculator
(https://dnamage.genetics.ucla.edu/) (Horvath 2013),
with the recommended default setting. The DNAmAge
was calculated directly without retraining the model on
the DNA methylation data from our study population, as
the online calculator was developed using a large col-
lection of genome-wide methylation datasets. The out-
put from the online calculator also contains cell count
estimates of various leukocyte types, which were used
as additional covariates in Cox proportional hazard re-
gression analysis. All the statistical analyses were per-
formed using R (R_Core_Team 2016).

Results
Characteristics of the study cohort

Our study sample consists of 262 Caucasians whose
ages range from 60 to 103 (Table 1). Of these, 206
(79 %) were deceased at the time of follow-up just prior
to this analysis, and the average elapsed time-to-death
from entry into the study was 4.4 years. Females and
males did not differ in mean chronological ages and
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mean DNAmAges, but the two gender groups signifi-
cantly differed in Fl;4, AgeDiff, and AgeResid. Fl;4 was
higher in females (P = 5.2e-5), as described previously
(Kim and Jazwinski 2015). On the other hand, AgeDiff
and AgeResid were higher in males (P = 0.0025 and
0.0086, respectively), which concurs with the higher
AMAR in males (Hannum et al. 2013).

DNAmAge and Fl;, are correlated with age

DNAmAGge is derived from transformed chronological
age in a statistical model in which the chronological age
is regressed on the methylation status of 353 CpG sites
throughout the genome (Horvath 2013). Thus,
DNAmAge is expected to be highly correlated with
chronological age. For example, the average correlation
coefficients were 0.97 and 0.96 for all training and test
data sets, respectively (Horvath 2013). Likewise, in our
sample, DNAmAge was significantly correlated with
chronological age (r = 0.63, P < 2.0e-16; Fig. 1a). Fl3,4
was also correlated linearly with chronological age as
health and function deficits tend to increase with age
(r=0.31, P =4.4e-7; Fig. 1b), although an exponential
model describes the relationship better (Kim et al. 2013;
Kim and Jazwinski 2015). AgeDiff was also correlated
with chronological age (» = —0.20, P = 9.3e-4; Fig. lc),
while AgeResid was not (Fig. 1d).
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As both FI3;, and DNAmAge were correlated with
chronological age, F15, and DNAmAge were correlated
with each other (» = 0.20, P = 0.0013; Fig. 2a). How-
ever, the correlation disappeared when adjusted for
chronological age (P > 0.5 by partial correlation), indi-
cating that without the age dependence, DNAmAge,
and FI;4 are unrelated. AgeDiff and AgeResid were
not correlated with Flz4 (Fig. 2b, c).

DNAmAGge is not a significant predictor of survival
when adjusted for age

The performance of a measure of biological age is best
assessed by its ability to predict mortality, which is the
ultimate consequence of aging. For this purpose, most of
the studies of DNAmAge measures used Cox proportion-
al hazard regression. We applied the same statistical
method to our survival data (Table 2). As expected,
chronological age was a significant predictor of survival:
The hazard of death was estimated to increase 13 %

annually (P < 2.0e-16; model 1). DNAmAge increased
the hazard of death by 5 % for a unit increase in
DNAmAge (P = 3.3e-16; model 2). Likewise, Fl34 was
estimated to increase the mortality hazard by 5 % for an
increase of Fl34 by 0.01 (P = 4.8e-10; model 3). When
present together as explanatory variables, DNAmAge
and FI3, remained significant without affecting each other
much (P =2.6e-13 and 8.2e-7, respectively; model 4). In
the presence of chronological age as an additional covar-
iate, however, DNAmAge was no longer a significant
mortality predictor (P = 0.63 and 0.61 in models 5 and 7,
respectively), while Fl34 still remained significant
(P =0.0054 and 0.0053 in models 6 and 7, respectively).
These results confirm that DNAmAge and chronological
age largely overlap with each other, but Fl54 is a separate
measure distinct from the two.

Different types of leukocytes exist in blood, and their
proportions may vary, depending on individuals’ health
conditions at the time of blood collection. This leukocyte
heterogeneity may confound estimation of intrinsic DNA
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Fig. 2 Scatter plots of Fl;4 by a

DNAmAge (a), AgeDiff (b), and
AgeResid (¢). Each regression
line is from the corresponding
standardized simple linear
regression, whose 3 value equals
the correlation coefficient
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methylation levels (Reinius et al. 2012). Methods to esti-
mate leukocyte type counts were developed and have
been often used to adjust DNA methylation measurements
(Houseman et al. 2012, 2014; Accomando et al. 2014).
Therefore, leukocyte type estimates were obtained using
Horvath’s Online Age Calculator and included as addi-
tional covariates in our Cox regression analysis. The
outcome of the leukocyte composition adjustment (model
8) was very similar to the outcome without the adjustment
(model 7). The only noticeable difference is a slight
decrease in the Z value of Fl;4 from 2.8 to 2.4, resulting
in a higher P value (P from 0.0053 to 0.016). This small
change is likely due to the redundancy of Fl;4 and leuko-
cyte composition in reflecting health conditions.

The Cox regression analysis was repeated with
AgeDiff (Table 3). A unit increase in AgeDiff was
estimated to reduce the hazard by 2 % (P < 0.020;
model 1). When present together, AgeDiff and Flz,4
remained significant without affecting each other
much (P = 0.028 and 6.1e-10, respectively; model
2). Along with chronological age, however, AgeDiff
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was not significant at all, whereas FI;4 maintained its
significance (models 3—5). The Cox regression analy-
sis was also repeated with AgeResid (Table 4), but
AgeResid was not significant under any of the covar-
iate combinations. As before, Fl34 remained signifi-
cant in all the models considered in Table 4.

FI5, outperforms chronological age
and DNAmAge-related measures in predicting
mortality of nonagenarians

In all the Cox regression models presented so far with
the whole study cohort, which includes subjects of ages
from 60 to 103, chronological age was the best predictor
of mortality (Fig. 3a). When the Cox regression was
limited to nonagenarians only, however, Fl34 was a
better predictor of mortality than chronological age
(P = 0.035 vs. P = 0.054, respectively; Fig. 3b). This
indicates that Fl, is a better measure of biological age at
later years when accumulation of health deficits accel-
erates differentially among the oldest old.
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Table 2 Cox regression for time-to-death as a function of age, DNAmAge, or Fl;4 (N = 262)

Model Variables b exp(b) se(b) A P R? Wald test P

1 Age 0.12 1.13 0.011 11 <2.0e-16 048 <2.0e-16

2 DNAmAge 0.048 1.05 0.0059 8.2 3.3e-16 0.22 3.0e-15

3 FL4* 0.049 1.05 0.0079 6.2 4.8¢-10 0.13 2.6e-09

4 DNAmAge 0.046 1.05 0.0063 73 2.6e-13 0.29 <2.0e-16
FL4* 0.039 1.04 0.0079 49 8.2e-07

5 Age 0.12 1.12 0.012 94 <2.0e-16 0.48 <2.0e-16
DNAmAge 0.0037 1.00 0.0077 0.49 0.63

6 Age 0.11 1.12 0.011 10 <2.0e-16 0.49 <2.0e-16
Fl34* 0.022 1.02 0.0080 2.8 0.0054

7 Age 0.11 1.12 0.012 8.8 <2.0e-16 0.50 <2.0e-16
DNAmAge 0.0050 1.00 0.0078 0.52 0.61
Flz4* 0.022 1.02 0.0080 2.8 0.0053

8 Age 0.11 1.12 0.013 8.6 <2.0e-16 0.51 <2.0e-16
DNAmAge 0.0039 1.00 0.0084 0.47 0.64
FL4* 0.020 1.02 0.0085 24 0.016
WBC® - — - -

All the regressions above contained sex as a covariate

b regression coefficient, exp(b) exponentiated b, se(b) standard error of b, Z the ratio of b to its standard error

4 Fl34 was multiplied by 100; therefore, the b value for Fls4 is the hazard of death for an increase of Flz4 by 0.01
® CD8.naive + CD8pCD28nCD45Ran + PlasmaBlast + CD4T + NK + Mono + Gran

Discussion

Since Horvath’s calculation of DNAmAge based on
genomic DNA methylation levels (beta values) and

chronological age (Horvath 2013), two DNAmAge-
derived measures have been used: AgeDiff and

Table 3 Cox regression for time-to-death as a function of AgeDiff or Fl34 (N = 262)

AgeResid. AgeDiff has been associated with mortality
(Marioni et al. 2015; Christiansen et al. 2016; Perna

Model Variables b exp(b) se(b) Z P R? Wald test P

1 AgeDiff*® -0.017 0.98 0.0074 2.3 0.020 0.022 0.053

2 AgeDiff* -0.017 0.98 0.0075 2.2 0.028 0.15 1.7¢-09
FI3,* 0.049 1.05 0.0079 6.2 6.1e-10

3 Age 0.12 1.13 0.011 11 <2.0e-16 0.48 <2.0e-16
AgeDiff* 0.0037 1.00 0.0077 0.49 0.63

4 Age 0.11 1.12 0.011 10 <2.0e-16 0.49 <2.0e-16
AgeDiff* 0.0040 1.00 0.0078 0.52 0.61
FI3,* 0.022 1.02 0.0080 2.8 0.0053

5 Age 0.11 1.12 0.012 10 <2.0e-16 0.51 <2.0e-16
AgeDiff* 0.0039 1.00 0.0084 0.47 0.64
Fl34* 0.020 1.02 0.0085 24 0.016
WBC® - - - -

All the regressions above contained sex as a covariate

b regression coefficient, exp(b) exponentiated b, se(b) standard error of b, Z the ratio of b to its standard error

#Fl34 was multiplied by 100; therefore, the b value for Fls4 is the hazard of death for an increase of Flz4 by 0.01
® CD8.naive + CD8pCD28nCD45Ran + PlasmaBlast + CDA4T + NK + Mono + Gran
¢ AgeDiff = AgeAccelerationDiff = DNAmAge — chronological age
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Table 4 Cox regression for time-to-death as a function of AgeResid or Fl34 (V =262)

Model Variables b exp(b) se(b) Z P R? Wald test P

1 AgeResid® 0.0023 1.00 0.0079 0.29 0.77 0.002 0.74

2 AgeResid® 0.00062 1.00 0.0081 0.076 0.94 0.13 1.3e-08
Fl34* 0.049 1.05 0.0079 6.2 5.2e-10

3 Age 0.12 1.13 0.011 11 <2.0e-16 0.48 <2.0e-16
AgeResid® 0.0037 1.00 0.0077 0.49 0.63

4 Age 0.11 1.12 0.011 10 <2.0e-16 0.49 <2.0e-16
AgeResid® 0.0040 1.00 0.0078 0.52 0.61
Fl34* 0.022 1.02 0.0080 2.8 0.0053

5 Age 0.11 1.12 0.012 9.8 <2.0e-16 0.51 <2.0e-16
AgeResid® 0.0039 1.00 0.0084 0.47 0.64
Fl34* 0.020 1.02 0.0085 2.4 0.016
WBC® - - - -

All the regressions above contained sex as a covariate

b regression coefficient, exp(b) exponentiated b, se(b) standard error of b, Z the ratio of b to its standard error

#Fl34 was multiplied by 100; therefore, the b value for Flz4 is the hazard of death for an increase of Flz4 by 0.01

® CD8.naive + CD8pCD28nCD45Ran + PlasmaBlast + CD4T + NK + Mono + Gran
°Residual = y — ¥ in linear regression of y (DNAmAge) on y (chronological age)

et al. 2016) and a frailty index (Breitling et al. 2016),
after adjustment for various sets of covariates, including
the leukocyte type composition. More recently, Chen
et al. expanded the original observation of Horvath
using more than 13,000 individuals from 13 different
cohorts, including three racial/ethnic groups, and found
AgeResid to be a significant predictor of mortality

(Horvath 2013; Chen et al. 2016). They also found that
incorporation of leukocyte composition information
greatly enhanced the significance of AgeResid in
predicting mortality.

A true measure of biological age should predict
mortality/survival with high accuracy. Our study
showed that Fl3,4 is a significant predictor of mortality,

*kk
* %k

*kk
%%

Age DNAmAge Fl,,

Age AgeDiff Fly, Age AgeResid Fl,

Fig. 3 Bar plots of effect sizes (Z a 10,04
scores) from Cox proportional '
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Table 3, and model 4 of Table 4 g
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whereas DNAmAge, AgeDiff, and AgeResid are not,
regardless of adjustment for leukocyte type composi-
tion. Our study sample consists of 262 Caucasians
whose ages range from 60 to 103, and by comparing
Fl54 and each of the DNAmAge measures side by side,
we clearly showed that Flz,4 is a far better predictor of
mortality than the DNAmAge measures. DNAmAge
was significant when the Cox regression was unadjusted
for chronological age, but DNAmAge became nonsig-
nificant when the regression was adjusted for this vari-
able. This confirms a high degree of redundancy be-
tween DNAmAge and chronological age. The same is
true with AgeDiff, the difference between DNAmAge
and chronological age. Because DNAmAge and age are
highly correlated with each other, AgeDiff is also cor-
related with age, though the correlation is not as strong
as that of DNAmAge with chronological age. The neg-
ative correlation of AgeDiff with chronological age
(Fig. 1c) indicates that the difference between
DNAmAge and chronological age decreases as chrono-
logical age increases, which is due to decreasing
DNAmAge with increasing chronological age. A simi-
lar observation was made in a longitudinal twin study
(Christiansen et al. 2016). The cause of this leveling of
DNAmAge relative to chronological age in later years
of life remains to be determined. On the other hand,
AgeResid, the residual of the linear regression of
DNAmAge on chronological age, is not correlated with
chronological age or DNAmAge. This is not surprising
because residuals from linear regressions are not corre-
lated with either of the variables used to calculate them.
However, AgeResid was not a significant predictor of
mortality in all the models we examined in our study. A
larger sample size would likely give better linear regres-
sion fitting, which would yield better residual estimates.
This could be one reason why our study could not detect
a significance association of AgeResid with survival.
Our study used a cohort consisting of 262 subjects of
European origin, whereas all the studies of DNAmAge
used meta-analyses of the results from multiple cohorts
involving many more subjects. A meta-analysis of com-
binable studies, if based on accurate statistical procedures
without any bias, should give a higher statistical power
than individual studies. Thus, it is possible that the meta-
analysis studies involving large numbers of subjects were
able to detect the significance of the various DNAmAge
measures that our study was unable to. However, this
consideration points to the fact that Fly4 is a much more
robust predictor of survival and measure of biological age

than any of the DNAmAge measures proposed thus far.
This is because it assesses biological factors that have
large effects on survival, whereas the DNAmAge mea-
sures only detect small statistical differences which require
very large samples. It is worth noting that this usually
involves the use of leukocyte type estimates, which per-
haps introduce some biological meaning that is sufficient
to make them perform. Fl34 is a particularly strong mea-
sure of biological age because it is a better predictor of
survival than is chronological age (Fig. 3) in the oldest old.
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