45 research outputs found

    The Dawning Era of Personalized Medicine Exposes a Gap in Medical Education

    Get PDF
    Medical student Keyan Salari argues that it is crucial that medical students be trained to use and interpret patients' genetic information appropriately and responsibly

    Genotype-Specific Differences between Mouse CNS Stem Cell Lines Expressing Frontotemporal Dementia Mutant or Wild Type Human Tau

    Get PDF
    Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease, we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD) mutation, rTg(tauP301L)4510, with those expressing comparable levels of wild type human tau, rTg(tauwt)21221. rTg(tauP301L)4510 mice express the human tauP301L variant in their forebrains and display cellular, histological, biochemical and behavioral abnormalities similar to those in human FTD, including age-dependent differences in tau phosphorylation that distinguish them from rTg(tauwt)21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tauP301L)4510 mice and from rTg(tauwt)21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice, validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tauP301L)4510 cultures was hypophosphorylated in comparison with rTg(tauwt)21221 as was seen in young adult mice. In addition, there were fewer human tau-expressing cells in rTg(tauP301L)4510 than in rTg(tauwt)21221 cultures. Following differentiation, neuronal filopodia-spine density was slightly greater in rTg(tauP301L)4510 than rTg(tauwt)21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns, the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    EphB4 controls blood vascular morphogenesis during postnatal angiogenesis

    No full text
    Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its ligand ephrinB2. To study their function, EphB4 variants were overexpressed in blood vessels of tumor xenografts. Our studies revealed that EphB4 acts as a negative regulator of blood vessel branching and vascular network formation, switching the vascularization program from sprouting angiogenesis to circumferential vessel growth. In parallel, EphB4 reduces the permeability of the tumor vascular system via activation of the angiopoietin-1/Tie2 system at the endothelium/pericyte interface. Furthermore, overexpression of EphB4 variants in blood vessels during (i) vascularization of non-neoplastic cell grafts and (ii) retinal vascularization revealed that these functions of EphB4 apply to postnatal, non-neoplastic angiogenesis in general. This implies that both neoplastic and non-neoplastic vascularization is driven not only by a vascular initiation program but also by a vascular patterning program mediated by guidance molecules
    corecore