37 research outputs found

    Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation

    Get PDF
    The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.M.C. acknowledges the support of EU Horizon2020 Marie S.-Curie IF MINDFLY project. A.E.B. acknowledges the support of Russian Science Foundation (grant 14-21-00110). M.A.A. acknowledges the support of Ministry of Higher Education Sultanate of Oman. T.H. acknowledges the support of Royal Academy of Engineering Fellowship (Graphlex). The support by the Marie-Curie Inter-national Research Staff Exchange Scheme “TelaSens” project, Research Executive Agency Grant No. 269271, Programme: FP7-PEOPLE-2010-IRSES and European Research Council through the FP7-IDEAS-ERC grant ULTRALASER are gratefully acknowledged

    Study of eta-eta ' mixing from measurement of B-(s)(0) -> J/psi eta((')) decay rates

    Get PDF
    A study of B and Bs meson decays into J/ψ η and J/ψ η′ final states is performed using a data set of proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, collected by the LCHb experiment and corresponding to 3.0 fb−1 of integrated luminosity. The decay B0 → J/ψ η′ is observed for the first time. The following ratios of branching fractions are measured: B(B0→J/ψη′)B(B0s→ J/ψη′)=(2.28±0.65 (stat)±0.10 (syst)±0.13 (fs/fd))×10−2,B(B0→ J/ψη)B(B0s→ J/ψη)=(1.85±0.61 (stat)±0.09 (syst)±0.11 (fs/fd))×10−2, where the third uncertainty is related to the present knowledge of fs/fd, the ratio between the probabilities for a b quark to form a Bs or a B0 meson. The branching fraction ratios are used to determine the parameters of η − η′ meson mixing. In addition, the first evidence for the decay Bs → ψ(2S)η′ is reported, and the relative branching fraction is measured, B(B0s→ ψ(2S)η′)B(B0s→ J/ψη′)=(38.7±9.0 (stat)±1.3 (syst)±0.9(B))×10−2, where the third uncertainty is due to the limited knowledge of the branching fractions of J/ψ and ψ(2S) mesons

    Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases

    Full text link

    Measurements of the B +, B 0, Bs0 B_s^0 meson and Λb0 \Lambda_b^0 baryon lifetimes

    Full text link
    corecore