37 research outputs found
Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation
The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.M.C. acknowledges the support of EU Horizon2020 Marie S.-Curie IF MINDFLY project. A.E.B. acknowledges the support of Russian Science Foundation (grant 14-21-00110). M.A.A. acknowledges the support of Ministry of Higher Education Sultanate of Oman. T.H. acknowledges the support of Royal Academy of Engineering Fellowship (Graphlex). The support by the Marie-Curie Inter-national Research Staff Exchange Scheme “TelaSens” project, Research Executive Agency Grant No. 269271, Programme: FP7-PEOPLE-2010-IRSES and European Research Council through the FP7-IDEAS-ERC grant ULTRALASER are gratefully acknowledged
Study of eta-eta ' mixing from measurement of B-(s)(0) -> J/psi eta((')) decay rates
A study of B and Bs meson decays into J/ψ η and J/ψ η′ final states is performed using a data set of proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, collected by the LCHb experiment and corresponding to 3.0 fb−1 of integrated luminosity. The decay B0 → J/ψ η′ is observed for the first time. The following ratios of branching fractions are measured:
B(B0→J/ψη′)B(B0s→ J/ψη′)=(2.28±0.65 (stat)±0.10 (syst)±0.13 (fs/fd))×10−2,B(B0→ J/ψη)B(B0s→ J/ψη)=(1.85±0.61 (stat)±0.09 (syst)±0.11 (fs/fd))×10−2, where the third uncertainty is related to the present knowledge of fs/fd, the ratio between the probabilities for a b quark to form a Bs or a B0 meson. The branching fraction ratios are used to determine the parameters of η − η′ meson mixing. In addition, the first evidence for the decay Bs → ψ(2S)η′ is reported, and the relative branching fraction is measured,
B(B0s→ ψ(2S)η′)B(B0s→ J/ψη′)=(38.7±9.0 (stat)±1.3 (syst)±0.9(B))×10−2, where the third uncertainty is due to the limited knowledge of the branching fractions of J/ψ and ψ(2S) mesons
Recommended from our members
A flow field around a cylindrical probe in proximity to stator blades and its effect on the measurements
Abstract
In multistage axial compressors of gas turbine engines, there is a need for a detailed understanding of the flow field in between the blade rows, which could be obtained by spanwise traversing. This requires a pneumatic probe to be immersed into the flow path between the blade rows, where the space is limited. Therefore, the probe will affect the flow field around it and in the blade channel, and the probe readings will be affected by that flow field. As a result, these probe readings cannot be translated to flow parameters based on just the freestream calibration characteristics, obtained in the idealized wind tunnel. In our paper, we provide a computational analysis of the flow field around the cylindrical probe in a constrained inter-blade-row environment at different circumferential locations and flow conditions both upstream and downstream of the stator blade row. It is shown that the flow angle measurement error can reach up to five degrees in the mid-pitch locations compared to undistorted flow, and dynamic head measurements can be up to 30% away from the actual mean values of the flow. These deviations are shown to be caused by flow field interaction inside the blade channel and, as a result, measured values, obtained during industrial compressor testing, could be corrected accordingly. The universal correction procedure is proposed for further use in the industry</jats:p