138 research outputs found

    Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps

    Get PDF
    © 2017 The Author(s). This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    Limited evidence of C4 plant consumption in mound building Macrotermes termites from savanna woodland chimpanzee sites.

    Get PDF
    Stable isotope analysis is an increasingly used molecular tool to reconstruct the diet and ecology of elusive primates such as unhabituated chimpanzees. The consumption of C4 plant feeding termites by chimpanzees may partly explain the relatively high carbon isotope values reported for some chimpanzee communities. However, the modest availability of termite isotope data as well as the diversity and cryptic ecology of termites potentially consumed by chimpanzees obscures our ability to assess the plausibility of these termites as a C4 resource. Here we report the carbon and nitrogen isotope values from 79 Macrotermes termite samples from six savanna woodland chimpanzee research sites across equatorial Africa. Using mixing models, we estimated the proportion of Macrotermes C4 plant consumption across savanna woodland sites. Additionally, we tested for isotopic differences between termite colonies in different vegetation types and between the social castes within the same colony in a subset of 47 samples from 12 mounds. We found that Macrotermes carbon isotope values were indistinguishable from those of C3 plants. Only 5 to 15% of Macrotermes diets were comprised of C4 plants across sites, suggesting that they cannot be considered a C4 food resource substantially influencing the isotope signatures of consumers. In the Macrotermes subsample, vegetation type and caste were significantly correlated with termite carbon values, but not with nitrogen isotope values. Large Macrotermes soldiers, preferentially consumed by chimpanzees, had comparably low carbon isotope values relative to other termite castes. We conclude that Macrotermes consumption is unlikely to result in high carbon isotope values in either extant chimpanzees or fossil hominins

    Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically engineered mouse models of mammary gland cancer enable the <it>in vivo </it>study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue.</p> <p>Methods</p> <p>We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging.</p> <p>Results</p> <p>In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice.</p> <p>Conclusion</p> <p>In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary.</p

    Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension

    Get PDF
    BACKGROUND: Chronic hypoxia influences gene expression in the lung resulting in pulmonary hypertension and vascular remodelling. For specific investigation of the vascular compartment, laser-microdissection of intrapulmonary arteries was combined with array profiling. METHODS AND RESULTS: Analysis was performed on mice subjected to 1, 7 and 21 days of hypoxia (FiO(2 )= 0.1) using nylon filters (1176 spots). Changes in the expression of 29, 38, and 42 genes were observed at day 1, 7, and 21, respectively. Genes were grouped into 5 different classes based on their time course of response. Gene regulation obtained by array analysis was confirmed by real-time PCR. Additionally, the expression of the growth mediators PDGF-B, TGF-β, TSP-1, SRF, FGF-2, TIE-2 receptor, and VEGF-R1 were determined by real-time PCR. At day 1, transcription modulators and ion-related proteins were predominantly regulated. However, at day 7 and 21 differential expression of matrix producing and degrading genes was observed, indicating ongoing structural alterations. Among the 21 genes upregulated at day 1, 15 genes were identified carrying potential hypoxia response elements (HREs) for hypoxia-induced transcription factors. Three differentially expressed genes (S100A4, CD36 and FKBP1a) were examined by immunohistochemistry confirming the regulation on protein level. While FKBP1a was restricted to the vessel adventitia, S100A4 and CD36 were localised in the vascular tunica media. CONCLUSION: Laser-microdissection and array profiling has revealed several new genes involved in lung vascular remodelling in response to hypoxia. Immunohistochemistry confirmed regulation of three proteins and specified their localisation in vascular smooth muscle cells and fibroblasts indicating involvement of different cells types in the remodelling process. The approach allows deeper insight into hypoxic regulatory pathways specifically in the vascular compartment of this complex organ

    Tracing the dynamic life story of a Bronze Age Female

    Get PDF
    YesAncient human mobility at the individual level is conventionally studied by the diverse application of suitable techniques (e.g. aDNA, radiogenic strontium isotopes, as well as oxygen and lead isotopes) to either hard and/or soft tissues. However, the limited preservation of coexisting hard and soft human tissues hampers the possibilities of investigating high-resolution diachronic mobility periods in the life of a single individual. Here, we present the results of a multidisciplinary study of an exceptionally well preserved circa 3.400-year old Danish Bronze Age female find, known as the Egtved Girl. We applied biomolecular, biochemical and geochemical analyses to reconstruct her mobility and diet. We demonstrate that she originated from a place outside present day Denmark (the island of Bornholm excluded), and that she travelled back and forth over large distances during the final months of her life, while consuming a terrestrial diet with intervals of reduced protein intake. We also provide evidence that all her garments were made of non-locally produced wool. Our study advocates the huge potential of combining biomolecular and biogeochemical provenance tracer analyses to hard and soft tissues of a single ancient individual for the reconstruction of high-resolution human mobility.The Danish National Research Foundation; The Carlsberg Foundation, L'Oreal Denmark-UNESCO; The ERC agreement no. 26944

    Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms

    Get PDF
    YesRecent clinical trials of the hypoglycaemic sodium-glucose co-transporter-2 (SGLT2) inhibitors, which inhibit renal glucose reabsorption, have reported beneficial cardiovascular outcomes. Whether SGLT2 inhibitors directly affect cardiovascular tissues, however, remains unclear. We have previously reported that the SGLT2 inhibitor canagliflozin activates AMP-activated protein kinase (AMPK) in immortalised cell lines and murine hepatocytes. As AMPK has anti-inflammatory actions in vascular cells, we examined whether SGLT2 inhibitors attenuated inflammatory signalling in cultured human endothelial cells. Incubation with clinically-relevant concentrations of canagliflozin, but not empagliflozin or dapagliflozin activated AMPK and inhibited IL-1β-stimulated adhesion of pro-monocytic U937 cells and secretion of IL-6 and monocyte chemoattractant protein-1 (MCP-1). Inhibition of MCP-1 secretion was attenuated by expression of dominant-negative AMPK and was mimicked by the direct AMPK activator, A769662. Stimulation of cells with either canagliflozin or A769662 had no effect on IL-1β-stimulated cell surface levels of adhesion molecules or nuclear factor-κB signalling. Despite these identical effects of canagliflozin and A769662, IL-1β-stimulated IL-6/MCP-1 mRNA was inhibited by canagliflozin, but not A769662, whereas IL-1β-stimulated c-jun N-terminal kinase phosphorylation was inhibited by A769662, but not canagliflozin. These data indicate that clinically-relevant canagliflozin concentrations directly inhibit endothelial pro-inflammatory chemokine/cytokine secretion by AMPK-dependent and -independent mechanisms without affecting early IL-1β signalling.Project Grant (PG/13/82/30483 to IPS and TMP) and PhD studentships (FS/16/55/32731 and FS/14/61/31284 to DB and AS) from the British Heart Foundation and an equipment grant (BDA11/0004309 to IPS and TMP) from Diabetes UK. OJK was supported by a Scholarship from the Iraqi Ministry of Higher Education and Scientific Research. TAA was supported by a Libyan Ministry of Education PhD Studentship

    Pathogens and host immunity in the ancient human oral cavity.

    Get PDF
    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    Spironolactone Lowers Portal Hypertension by Inhibiting Liver Fibrosis, ROCK-2 Activity and Activating NO/PKG Pathway in the Bile-Duct-Ligated Rat

    Get PDF
    OBJECTIVE: Aldosterone, one of the main peptides in renin angiotensin aldosterone system (RAAS), has been suggested to mediate liver fibrosis and portal hypertension. Spironolactone, an aldosterone antagonist, has beneficial effect on hyperdynamic circulation in clinical practice. However, the mechanisms remain unclear. The present study aimed to investigate the role of spionolactone on liver cirrhosis and portal hypertension. METHODS: Liver cirrhosis was induced by bile duct ligation (BDL). Spironolactone was administered orally (20 mg/kg/d) after bile duct ligation was performed. Liver fibrosis was assessed by histology, Masson's trichrome staining, and the measurement of hydroxyproline and type I collagen content. The activation of HSC was determined by analysis of alpha smooth muscle actin (α-SMA) expression. Protein expressions and protein phosphorylation were determined by immunohistochemical staining and Western blot analysis, Messenger RNA levels by quantitative real time polymerase chain reaction (Q-PCR). Portal pressure and intrahepatic resistance were examined in vivo. RESULTS: Treatment with spironolactone significantly lowered portal pressure. This was associated with attenuation of liver fibrosis, intrahepatic resistance and inhibition of HSC activation. In BDL rat liver, spironolactone suppressed up-regulation of proinflammatory cytokines (TNFα and IL-6). Additionally, spironolactone significantly decreased ROCK-2 activity without affecting expression of RhoA and Ras. Moreover, spironolactone markedly increased the levels of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS and the activity of NO effector-protein kinase G (PKG) in the liver. CONCLUSION: Spironolactone lowers portal hypertension by improvement of liver fibrosis and inhibition of intrahepatic vasoconstriction via down-regulating ROCK-2 activity and activating NO/PKG pathway. Thus, early spironolactone therapy might be the optional therapy in cirrhosis and portal hypertension
    • …
    corecore