47 research outputs found

    Quantum oscillator and Kepler-Coulomb problems in curved spaces: deformed shape invariance, point canonical transformations, and rational extensions

    Full text link
    The quantum oscillator and Kepler-Coulomb problems in dd-dimensional spaces with constant curvature are analyzed from several viewpoints. In a deformed supersymmetric framework, the corresponding nonlinear potentials are shown to exhibit a deformed shape invariance property. By using the point canonical transformation method, the two deformed Schr\"odinger equations are mapped onto conventional ones corresponding to some shape-invariant potentials, whose rational extensions are well known. The inverse point canonical transformations then provide some rational extensions of the oscillator and Kepler-Coulomb potentials in curved space. The oscillator on the sphere and the Kepler-Coulomb potential in a hyperbolic space are studied in detail and their extensions are proved to be consistent with already known ones in Euclidean space. The partnership between nonextended and extended potentials is interpreted in a deformed supersymmetric framework. Those extended potentials that are isospectral to some nonextended ones are shown to display deformed shape invariance, which in the Kepler-Coulomb case is enlarged by also translating the degree of the polynomial arising in the rational part denominator.Comment: 32 pages, no figure; published versio

    20.5 kA current leads for ATLAS Barrel Toroid superconducting magnets

    Get PDF
    Three pairs of 20.5 kA current leads for the ATLAS Toroid Magnets have been designed, manufactured and tested at Kurchatov Institute. The current leads have a high mechanical reliability and the vacuum tightness under 30 bars of internal pressure. The insulation between the current carrying parts and the mounting flange, the hydraulic connections and the temperature gauges withstand the overvoltage of at least 2 kV. The current leads are fully equipped with diagnostics needed for safety and control. The current leads were tested up to 24 kA. According to CERN's specification they were also tested in the absence of any cooling at very slow current discharge rate (5 A/s) from 20.5 kA to zero without any excessive overheating. Nowadays the current leads are successfully used at the ATLAS Magnet Test Facility at CERN. (6 refs)

    Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides

    Get PDF
    Welding fume particles are hazardous. Their toxicity likely depends on their composition and reactivity. This study aimed at exploring the role of sodium or other fluorides (NaF), which are intentionally added to flux-cored wire electrodes for stainless steel welding, on the solubility (in phosphate buffered saline) and toxicity of the generated welding fume particles. A multi-analytical particle characterization approach along with in-vitro cell assays was undertaken. The release of Cr(VI) and Mn from the particles was tested as a function of fluoride solution concentration. The welding fume particles containing NaF released significantly higher amounts of Cr(VI) compared with solid wire reference fumes, which was associated with increased cytotoxicity and genotoxicity in-vitro. No crystalline Na or potassium (K) containing chromates were observed. Cr(VI) was incorporated in an amorphous mixed oxide. Solution-added fluorides did not increase the solubility of Cr(VI), but contributed to a reduced Mn release from both solid and flux-cored wire fume particles and the reduction of Cr(VI) release from solid wire fume particles. Chemical speciation modeling suggested that metal fluoride complexes were not formed. The presence of NaF in the welding electrodes did not have any direct, but possibly an indirect, role in the Cr(VI) solubility of welding fumes

    DIRAC - Distributed Infrastructure with Remote Agent Control

    Full text link
    This paper describes DIRAC, the LHCb Monte Carlo production system. DIRAC has a client/server architecture based on: Compute elements distributed among the collaborating institutes; Databases for production management, bookkeeping (the metadata catalogue) and software configuration; Monitoring and cataloguing services for updating and accessing the databases. Locally installed software agents implemented in Python monitor the local batch queue, interrogate the production database for any outstanding production requests using the XML-RPC protocol and initiate the job submission. The agent checks and, if necessary, installs any required software automatically. After the job has processed the events, the agent transfers the output data and updates the metadata catalogue. DIRAC has been successfully installed at 18 collaborating institutes, including the DataGRID, and has been used in recent Physics Data Challenges. In the near to medium term future we must use a mixed environment with different types of grid middleware or no middleware. We describe how this flexibility has been achieved and how ubiquitously available grid middleware would improve DIRAC.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, Word, 5 figures. PSN TUAT00

    DIRAC - Distributed Infrastructure with Remote Agent Control

    No full text
    This paper describes DIRAC, the LHCb Monte Carlo production system. DIRAC has a client/server architecture based on: Compute elements distributed among the collaborating institutes; Databases for production management, bookkeeping (the metadata catalogue) and software configuration; Monitoring and cataloguing services for updating and accessing the databases. Locally installed software agents implemented in Python monitor the local batch queue, interrogate the production database for any outstanding production requests using the XML-RPC protocol and initiate the job submission. The agent checks and, if necessary, installs any required software automatically. After the job has processed the events, the agent transfers the output data and updates the metadata catalogue. DIRAC has been successfully installed at 18 collaborating institutes, including the DataGRID, and has been used in recent Physics Data Challenges. In the near to medium term future we must use a mixed environment with different types of grid middleware or no middleware. We describe how this flexibility has been achieved and how ubiquitously available grid middleware would improve DIRAC

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Bautin ideal of a cubic map

    Get PDF
    We compute the radical of the ideal generated by the first three focus quantities of maps defined by irreducible branches of a cubic curve on the real plane. It is shown that the ideal is not radical in this case

    Bautin ideal of a cubic map

    No full text
    We compute the radical of the ideal generated by the first three focus quantities of maps defined by irreducible branches of a cubic curve on the real plane. It is shown that the ideal is not radical in this cas

    Purification of washing waters of iron removal stations

    No full text
    The article presents the results on use of water preparation waste, namely the fulfilled ionites of KU-2-8 and AV-17-8 as a coagulant for purification of washing waters of iron removal stations. In this work the optimum dose of offered coagulants, degree of washing waters clarification, residual iron concentration in washing waters after 2 h of sedimentation were defined. Specific resistance to filtering of received deposit was also established. This deposit is suggested to be used for ceramic goods manufacture
    corecore