128 research outputs found
Cytological detection of microfilaria in unsuspected clinical scenario
Filariasis is a major public health problem in tropical countries, including India. Fine needle aspiration cytology plays an important role in prompt recognition of disease. Aim was to highlight the role of fine needle aspiration cytology as a simple and cost effective tool to detect microfilarial infestation. A retrospective study of 10 cases in which fine needle aspiration cytology was done and was useful in detecting microfilaria. Patient’s age were ranging from 19-62 years. M:F ratio being 7:3. Out of ten cases, maximum cases of microfilarial detection was reported in soft tissue swelling (four cases), followed by lymph node swelling (three cases), thyroid swelling (two cases) and breast swelling (one case). Careful screening of fine needle aspiration cytology smears is helpful in detecting microfilaria even in asymptomatic patients living in endemic zone which plays a significant role in recognition of disease and obviating severe manifestations of filariasis if treated in time
A CLINICAL TRIAL OF AROGYA VARDHINI VATI AND LEKHANIYA MAHAKASHAYA IN THE MANAGEMENT OF OBESITY
Obesity is a condition in which there is an excessive accumulation of fat in the body which is a risk to health. The WHO now considers obesity to be a global epidemic and public health problem. Globally an estimated 300 million adults are now obese and many are overweight. A person with a BMI of 30 or more is generally considered obese. The problem is due to calorie imbalance resulting from an excessive food intake coupled with inadequate exercise. It is associated with increased mortality by predisposing to the development of important diseases like diabetes, hypertension, atherosclerosis, heart diseases, arthritis, infertility etc and diminishes the efficacy and happiness of affected. As per Ayurveda, Acharya charaka has counted Sthoulya under the eight varieties of impediments which are designated as Ninditapurusha. As Chikitsa sutra of Sthoulya, Lekhan karma is an important therapeutic measure said by Acharya charaka. Moreover, drugs of Arogya vardhini vati and Lekhaniya mahakashaya are most effective in the management of Sthoulya. To assess the effect of Lekhan karma, 20 patients were selected for this study from the OPD and IPD of Uttarakhand Ayurved University, Gurukul Campus Hospital, Haridwar. The effect of the therapy was assessed statically based on the performa prepared
THE SCOPE OF AYURVEDIC MEDICINE AND THERAPY IN THE MANAGMENT OF INFERTILITY
Infertility is described as an inability to conceive despite unprotective sex for duration of one year or more. Male, female or both can be a victim for this disorder. There may be many biological causes of infertility including some can be treated with medical or surgical intervention. Ayurveda consider this problem as a cause of deterioration of quality of four factors i.e., time of ovulation, female health in context of reproductive system, quality of sperm and ovum and female’s proper nutrition. There are different treatment methods and medicines used according to the deficit in male, female or in both. Vajikaran drugs like Ashwagandha, Madhuyasthi, Vidarikanda, Gokshura etc., are used in male fertility problems and Satavari, Punarnava, Dasmoola, Aloevera etc., used in female infertility problems. The purificatory procedures like Vamana, Virechana, Basti etc., are also found very effective to improve the quality and strength of required reproductive factors in both sexes. The effect of Uttar basti is also evidenced in different researches to treat female infertility
Cross-sections for nuclide production in 56Fe target irradiated by 300, 500,750, 1000, 1500, and 2600 MeV protons compared with data on hydrogen target irradiation by 300, 500, 750, 1000, and 1500 MeV/nucleon 56Fe ions
Cross-sections for radioactive nuclide production in 56Fe(p,x) reactions at
300, 500, 750, 1000, 1500, and 2600 MeV were measured using the ITEP U-10
proton accelerator. In total, 221 independent and cumulative yields of products
of half-lives from 6.6 min to 312 days have been obtained via the
direct-spectrometry method. The measured data have been compared with the
experimental data obtained elsewhere by the direct and inverse kinematics
methods and with calculations by 15 codes, namely: MCNPX (INCL, CEM2k, BERTINI,
ISABEL), LAHET (BERTINI, ISABEL), CEM03 (.01, .G1, .S1), LAQGSM03 (.01, .G1,
>.S1), CASCADE-2004, LAHETO, and BRIEFF. Most of our data are in a good
agreement with the inverse kinematics results and disprove the results of some
earlier activation measurements that were quite different from the inverse
kinematics measurements. The most significant calculation-to-experiment
differences are observed in the yields of the A<30 light nuclei, indicating
that further improvements in nuclear reaction models are needed, and pointing
out as well to a necessity of more complete measurements of such reactions.Comment: 53 pages, 9 figures, 6 tables, only pdf file, submitted to Phys. Rev.
Status of the PANDA barrel DIRC
The PANDA experiment at the future Facility for Antiproton and Ion Research in Europe GmbH (FAIR) at GSI, Darmstadt will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Hadronic PID in the barrel region of the PANDA detector will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. The design is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. Detailed Monte Carlo simulation studies were performed for DIRC designs based on narrow bars or wide plates with a variety of focusing solutions. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution and a maximum likelihood approach was used to determine the π/K separation. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN. This article describes the status of the design and R&D for the PANDA Barrel DIRC detector, with a focus on the performance of different DIRC designs in simulation and particle beams
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form factors at P¯ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p→e+e−p¯p→e+e− is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p→π+π−p¯p→π+π− , is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
About the first experiment at JINR nuclotron deuteron beam with energy 2.52 gev on investigation of transmutation of I-129, NP-237, PU-238 and PU-239 in the field of neutrons generated in pbtarget with U-blanket
The experiment described in this communication is a part of the scientific program „Investigations of physical aspects of electronuclear method of energy production and transmutation of radioactive waste of atomic energetic using relativistic beams from the JINR Synchrophasotron/Nuclotron“ - the project „Energy plus Transmutation“. The performing of the first experiment at deuteron beam with energy 2.52 GeV at the electronuclear setup which consists of Pb-target with U-blanket (206.4 kg of natural uranium) and transmutation samples and its preliminary results are described. The hermetic samples of isotopes of I-129, Np-237, Pu-238 and Pu-239 which are produced in atomic reactors and industry setups which use nuclear materials and nuclear technologies were irradiated in the field of electronuclear neutrons produced in the Pbtarget surrounded with the U-blanket setup “Energy plus transmutation”. The estimations of its transmutations (radioecological aspect) were obtained in result of measurements of gamma activities of these samples. The information about space-energy distribution of neutrons in the volume of the Pb-target and the U-blanket was obtained with help of sets of activation threshold detectors (Al, V, Cu, Co, Y, In, I, Ta, Au, W, Bi and other), solid state nuclear track detectors, He-3 neutron detectors and nuclear emulsions
A Common Carcinogen Benzo[a]pyrene Causes Neuronal Death in Mouse via Microglial Activation
BACKGROUND: Benzo[a]pyrene (B[a]P) belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked) food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our study throws light on other health hazards that such pollutants may exert
Abrogated Inflammatory Response Promotes Neurogenesis in a Murine Model of Japanese Encephalitis
Japanese encephalitis virus (JEV) induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline.Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE) and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used.This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors
- …