169 research outputs found

    Los proboscideos neógenos de Piquera de San Esteban (Cuenca del Duero, Soria). Implicaciones bioestratigráficas

    Get PDF
    The study of dental elements of mastodont and dinothere found in Piquera de San Esteban (Soria) specifies them to be Gomphotherium angustidens Cuvier and Deinotherium giganteum Kaup. Gn the basis of this identification and by comparison with other material, the age of the locality is dated being Middle Miocene, to be exact, upper Astaracien, biozone MN7.Se estudian unos elementos dentarios de mastodonte y dinoterio (Proboscidea, Mammalia) encontrados en Piquera de San Esteban (Soria), que se determinan como Gomphotherium angustidens Cuvier y Deinotherium giganteum Kaup. En base a estas identificaciones y por comparación con otros materiales, la localidad se data como Mioceno medio, concretamente como Astaraciense superior, biozona MN7 de Mein

    Impact of climate change on surface stirring and transport in the Mediterranean Sea

    Get PDF
    Understanding how climate change will affect oceanic fluid transport is crucial for environmental applications and human activities. However, a synoptic characterization of the influence of climate change on mesoscale stirring and transport in the surface ocean is missing. To bridge this gap, we exploit a high-resolution, fully coupled climate model of the Mediterranean basin using a Network Theory approach. We project significant increases of horizontal stirring and kinetic energies in the next century, likely due to increments of available potential energy. The future evolution of basin-scale transport patterns hints at a rearrangement of the main hydrodynamic provinces, defined as regions of the surface ocean that are well mixed internally but with minimal cross-flow across their boundaries. This results in increased heterogeneity of province sizes and stronger mixing in their interiors. Our approach can be readily applied to other oceanic regions, providing information for the present and future marine spatial planning.En prensa3,79

    Magnetic susceptibility of insulators from first principles

    Full text link
    We present an {\it ab initio} approach for the computation of the magnetic susceptibility χ\chi of insulators. The approach is applied to compute χ\chi in diamond and in solid neon using density functional theory in the local density approximation, obtaining good agreement with experimental data. In solid neon, we predict an observable dependence of χ\chi upon pressure.Comment: Revtex, to appear in Physical Review Lette

    Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action

    Get PDF
    [EN] Soybean peroxidase (SBP) has been employed for the treatment of aqueous solutions containing pentachlorophenol (PCP) in the presence of hydrogen peroxide at pH range 5-7. Reaction carried out with 1mg/L of PCP, 4mg/L of H2O2, and 1.3x10(-9)M of SBP showed a fast initial elimination of PCP (ca. 30% in 20min), but the reaction does not go beyond the removal of 50% of the initial concentration of PCP. Modification in SBP and PCP amounts did not change the reaction profile and higher amounts of H2O2 were detrimental for the reaction. Addition of Fe(II) to the system resulted in an acceleration of the process to reach nearly complete PCP removal at pH 5 or 6; this is more probably due to a synergetic effect of the enzymatic process and Fenton reaction. However, experiments developed in tap water resulted in a lower PCP elimination, but this inconvenience can be partly overcome by leaving the tap water overnight in an open vessel before reaction.We want to acknowledge Davide Mainero from Acea Pinerolese for his collaboration in this research. The authors want to thank the financial support of the European Union (PIRSES-GA-2010-269128, EnvironBOS and Marie Sklodowska-Curie Research and Innovation Staff Exchange projectH2020-MSCA-RISE-2014, Mat4treaT-project number: 645551) and Spanish Ministerio de Educacion y Ciencia (CTQ2015-69832-C4-4-R). Sara Garcia-Ballesteros would like to thank the Spanish Ministerio de Economia y Competitividad for her fellowship (BES-2013-066201).Tolardo, V.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Vercher Pérez, RF.; Amat Payá, AM.; Arqués Sanz, A.; Laurenti, E. (2019). Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action. Water Air & Soil Pollution. 230(6):1-8. https://doi.org/10.1007/s11270-019-4189-7S182306Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011 .Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere, 52(2), 313–324. https://doi.org/10.1016/S0045-6535(03)00211-X .Calza, P., Zacchigna, D., & Laurenti, E. (2016). Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 23(23), 23742–23749. https://doi.org/10.1007/s11356-016-7399-1 .Caza, N., Bewtra, J., Biswas, N., & Taylor, K. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 33(13), 3012–3018. https://doi.org/10.1016/S0043-1354(98)00525-9 .Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322(1–3), 21–39. https://doi.org/10.1016/j.scitotenv.2003.09.015 .Donadelli, J. A., Carlos, L., Arques, A., & García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057 .Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28(2), 83–99. https://doi.org/10.1016/S0926-3373(00)00168-5 .Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B., & Guieysse, B. (2007). Sequential photochemical–biological degradation of chlorophenols. Chemosphere, 66(11), 2201–2209. https://doi.org/10.1016/j.chemosphere.2006.08.036 .Garcia-Peña, E. I., Zarate-Segura, P., Guerra-Blanco, P., Poznyak, T., & Chairez, I. (2012). Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation. Water, Air, and Soil Pollution, 223(7), 4047–4064. https://doi.org/10.1007/s11270-012-1172-y .Hoekstra, E. J., De Weerd, H., De Leer, E. W. B., & Brinkman, U. A. T. (1999). Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environmental Science and Technology, 33(15), 2543–2549. https://doi.org/10.1021/es9900104 .Karci, A. (2014). Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere, 99, 1–18. https://doi.org/10.1016/j.chemosphere.2013.10.034 .Li, Z. (2018). Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. Journal of Environmental Management, 205, 163–173. https://doi.org/10.1016/j.jenvman.2017.09.070 .Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009 .Marchis, T., Cerrato, G., Magnacca, G., Crocellà, V., & Laurenti, E. (2012). Immobilization of soybean peroxidase on aminopropyl glass beads: structural and kinetic studies. Biochemical Engineering Journal, 67, 28–34. https://doi.org/10.1016/j.bej.2012.05.002 .Muñoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2013). Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/?-Al2O3 catalyst. Water Research, 47(9), 3070–3080. https://doi.org/10.1016/j.watres.2013.03.024 .Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution. Elsevier. https://doi.org/10.1016/j.envpol.2017.11.060 .Ngo, T. T., & Lenhoff, H. M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105(1), 389–397. https://doi.org/10.1016/0003-2697(80)90475-3 .Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009 .Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 .Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005, July 22). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports. Springer-Verlag. https://doi.org/10.1007/s00299-005-0972-6 .Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010 .Qayyum, H., Maroof, H., & Yasha, K. (2009). Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 29(2), 94–119. https://doi.org/10.1080/07388550802685306 .Samokyszyn, V. M., Freeman, J. P., Rao Maddipati, K., & Lloyd, R. V. (1995). Peroxidase-catalyzed oxidation of pentachlorophenol. Chemical Research in Toxicology, 8, 349–355 http://pubs.acs.org/doi/pdf/10.1021/tx00045a005 . Accessed 23 June 2017Santos-Juanes, L., Amat, A. M., & Arques, A. (2017a). Strategies to drive photo-Fenton process at mild conditions for the removal of xenobiotics from aqueous systems. Current Organic Chemistry, 21(12), 1074–1083. https://doi.org/10.1136/adc.2010.199901 .Santos-Juanes, L., García Einschlag, F. S., Amat, A. M., & Arques, A. (2017b). Combining ZVI reduction with photo-Fenton process for the removal of persistent pollutants. Chemical Engineering Journal, 310, 484–490. https://doi.org/10.1016/j.cej.2016.04.114 .Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315. https://doi.org/10.1016/S0920-5861(02)00228-6 .Sharma, S., Mukhopadhyay, M., & Murthy, Z. V. P. (2013). Treatment of chlorophenols from wastewaters by advanced oxidation processes. Separation & Purification Reviews, 42(May 2015), 37–41. https://doi.org/10.1080/15422119.2012.669804 .Soler, J., García-Ripoll, A., Hayek, N., Miró, P., Vicente, R., Arques, A., & Amat, A. M. (2009). Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Research, 43(18), 4441–4450. https://doi.org/10.1016/j.watres.2009.07.011 .Steevensz, A., Cordova Villegas, L. G., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014). Soybean peroxidase for industrial wastewater treatment: a mini review. Journal of Environmental Engineering and Science, 9(3), 181–186. https://doi.org/10.1680/jees.13.00013 .Sun, Z., Wei, X., Zhang, H., & Hu, X. (2015). Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film. Environmental Science and Pollution Research, 22(5), 3828–3837. https://doi.org/10.1007/s11356-014-3641-x .Tsai, W.-T. (2013). A review on environmental distributions and risk management of phenols pertaining to the endocrine disrupting chemicals in Taiwan. Toxicological & Environmental Chemistry, 95(5), 723–736. https://doi.org/10.1080/02772248.2013.818150 .Valderrama, B., Ayala, M., & Vazquez-Duhalt, R. (2002, May 1). Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry and Biology. Cell Press. https://doi.org/10.1016/S1074-5521(02)00149-7 .Verbrugge, L. A., Kahn, L., & Morton, J. M. (2018). Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. Environmental Science and Pollution Research, 25(19), 19187–19195. https://doi.org/10.1007/s11356-018-2269-7 .Wright, H., & Nicell, J. A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 70(1), 69–79. https://doi.org/10.1016/S0960-8524(99)00007-3 .Zhang, G., & Nicell, J. A. (2000). Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 34(5), 1629–1637. https://doi.org/10.1016/S0043-1354(99)00326-7 .Zhang, J., Ye, P., Chen, S., & Wang, W. (2007). Removal of pentachlorophenol by immobilized horseradish peroxidase. International Biodeterioration & Biodegradation, 59, 307–314. https://doi.org/10.1016/j.ibiod.2006.09.003 .Zheng, W., Yu, H., Wang, X., & Qu, W. (2012, July 1). Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environment International. Pergamon. https://doi.org/10.1016/j.envint.2011.04.014

    The Lamé Class of Lorenz Curves.

    Get PDF
    In this paper, the class of Lamé Lorenz curves is studied. This family has the advantage of modeling inequality with a single parameter. The family has a double motivation: it can be obtain from an economic model and from simple transformations of classical Lorenz curves. The underlying cumulative distribution functions have a simple closed form, and correspond to the Singh-Maddala and Dagum distributions, which are well known in the economic literature. The Lorenz order is studied and several inequality and polarization measures are obtained, including Gini, Donaldson-Weymark-Kakwani, Pietra and Wolfson indices. Some extensions of the Lamé family are obtained. Fitting and estimation methods under two different data configuration are proposed. Empirical applications with real data are given. Finally, some relationships with other curves are included.The authors thank to Ministerio de Econom a y Competitividad, project ECO2010-15455, for partial support. The second author thanks to the Ministerio de Educaci on (FPU AP-2010-4907) for partial support. We are grateful for the constructive suggestions provided by the reviewers, which improved the paper

    Fauna y bioestratigrafía del yacimiento Aragoniense de Montejo de la Vega de la Serrezuela (Segovia)

    Get PDF
    The macro and micromammals fossils of Montejo de la Vega de la Serrezuela (Segovia, Spain) are studied. The identified taxons allow to place the new locality in the Middle Aragonian, unit MN5 of Mein (1977, 1979, 1990). The Montejo de la Vega deposit can be correlated with the Arroyo del Olivar in the Madrid basin and the Las Planas 4A, 4B, Y4C in the Calatayud-Teruel basin.Se estudian los macro y micromamíferos fósiles de Montejo de la Vega de la Serrezuela (Segovia). Los taxones identificados permiten situar esta localidad en el Aragoniense medio, unidad MN5 de Mein (1977, 1979, 1990). El yacimiento de Montejo de la Vega puede correlacionarse con el de Arroyo del Olivar en la cuenca de Madrid y con los de Las Planas 4A, 4B y 4C en la cuenca de Calatayud-Teruel

    Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to the Mediterranean region

    Get PDF
    The Mediterranean region is one of the climate hotspots where the climate change impacts are both pronounced and documented. The HyMeX (Hydrometeorological Mediterranean eXperiment) aims to improve our understanding of the water cycle from the meteorological to climate scales. However, monitoring the water cycle with Earth observations (EO) is still a challenge: EO products are multiple, and their utility is degraded by large uncertainties and incoherences among the products. Over the Mediterranean region, these difficulties are exacerbated by the coastal/mountainous regions and the small size of the hydrological basins. Therefore, merging/integration techniques have been developed to reduce these issues. We introduce here an improved methodology that closes not only the terrestrial but also the atmospheric and ocean budgets. The new scheme allows us to impose a spatial and temporal multi-scale budget closure constraint. A new approach is also proposed to downscale the results from the basin to pixel scales (at the resolution of 0.25∘). The provided Mediterranean WC budget is, for the first time, based mostly on observations such as the GRACE water storage or the netflow at the Gibraltar Strait. The integrated dataset is in better agreement with in situ measurements, and we are now able to estimate the Bosporus Strait annual mean netflow.</p

    The Asakura-Oosawa model in the protein limit: the role of many-body interactions

    Full text link
    We study the Asakura-Oosawa model in the "protein limit", where the penetrable sphere radius RAOR_{AO} is much greater than the hard sphere radius RcR_c. The phase behaviour and structure calculated with a full many-body treatment show important qualitative differences when compared to a description based on pair potentials alone. The overall effect of the many-body interactions is repulsive.Comment: 9 pages and 11 figures, submitted to J. Phys.: Condensed Matter, special issue "Effective many-body interactions and correlations in soft matter

    Recent advances in Pichia pastoris as host for heterologous expression system for lipases : a review

    Get PDF
    The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented. In this chapter, an overview of the new success in synthetic biology, with traditional molecular genetic techniques and bioprocess engineering in the last 5 years in the cell factory Pichia pastoris, the most promising host system for heterologous lipase production, is presented. The goals get on heterologous Candida antarctica, Rhizopus oryzae, and Candida rugosa lipases, three of the most common lipases used in biocatalysis, are showed. Finally, new cell factories producing heterologous lipases are presented

    On the chronological structure of the solutrean in Southern Iberia

    Get PDF
    The Solutrean techno-complex has gained particular significance over time for representing a clear demographic and techno-typological deviation from the developments occurred during the course of the Upper Paleolithic in Western Europe. Some of Solutrean's most relevant features are the diversity and techno-typological characteristics of the lithic armatures. These have been recurrently used as pivotal elements in numerous Solutrean-related debates, including the chronological organization of the techno-complex across Iberia and Southwestern France. In Southern Iberia, patterns of presence and/or absence of specific point types in stratified sequences tend to validate the classical ordering of the techno-complex into Lower, Middle and Upper phases, although some evidence, namely radiocarbon determinations, have not always been corroborative. Here we present the first comprehensive analysis of the currently available radiocarbon data for the Solutrean in Southern Iberia. We use a Bayesian statistical approach from 13 stratified sequences to compare the duration, and the start and end moments of each classic Solutrean phase across sites. We conclude that, based on the current data, the traditional organization of the Solutrean cannot be unquestionably confirmed for Southern Iberia, calling into doubt the status of the classically defined type-fossils as precise temporal markers.Fundacao para a Ciencia e Tecnologia [PTDC/HAH/64184/2006, PTDC/HIS-ARQ/117540/2010, SFRH/BD/65527/2009, SFRH/BPD/96277/2013]; National Geographic Society [8045-06]; Wenner-Gren Foundation for Anthropological Research [8290
    corecore