1,540 research outputs found

    Induction flowmeter for dielectric fluids, experimental verification final report

    Get PDF
    Experimental verification of induction flow meter for use with dielectric fluid

    Low noise electromagnetic flowmeter

    Get PDF
    Parasitic hum is removed by using an isophase magnetic field created within flowmeter and an enclosure which prevents leakage of flux field. Method prevents contamination of flow conduit and eliminates zero point drift

    Small molecule conjugates with dimetal species for protein inhibition

    Get PDF
    Methods for targeting a protein by providing an inhibitor covalently linked to a rhodium(II) complex, introducing the inhibitor to the target protein and allowing the inhibitor and protein to interact. The rhodium(II) complex covalently linked to the inhibitor binds the target protein both inorganically and organically and forms stabilizing secondary contacts between the rhodium(II) complex and the protein

    CLOUDS search for variability in brown dwarf atmospheres

    Get PDF
    Context: L-type ultra-cool dwarfs and brown dwarfs have cloudy atmospheres that could host weather-like phenomena. The detection of photometric or spectral variability would provide insight into unresolved atmospheric heterogeneities, such as holes in a global cloud deck. Aims: It has been proposed that growth of heterogeneities in the global cloud deck may account for the L- to T-type transition as brown dwarf photospheres evolve from cloudy to clear conditions. Such a mechanism is compatible with variability. We searched for variability in the spectra of five L6 to T6 brown dwarfs in order to test this hypothesis. Methods: We obtained spectroscopic time series using VLT/ISAAC, over 0.99-1.13um, and IRTF/SpeX for two of our targets, in J, H and K bands. We search for statistically variable lines and correlation between those. Results: High spectral-frequency variations are seen in some objects, but these detections are marginal and need to be confirmed. We find no evidence for large amplitude variations in spectral morphology and we place firm upper limits of 2 to 3% on broad-band variability, on the time scale of a few hours. The T2 transition brown dwarf SDSS J1254-0122 shows numerous variable features, but a secure variability diagnosis would require further observations. Conclusions: Assuming that any variability arises from the rotation of patterns of large-scale clear and cloudy regions across the surface, we find that the typical physical scale of cloud cover disruption should be smaller than 5-8% of the disk area for four of our targets. The possible variations seen in SDSS J1254-0122 are not strong enough to allow us to confirm the cloud breaking hypothesis.Comment: 17 pages, 14 figures, accepted by A&

    Infrared and kinematic properties of the substellar object G 196-3B

    Full text link
    We report unusual near- and mid-infrared photometric properties of G 196-3 B, the young substellar companion at 16 arcsec from the active M2.5-type star G 196-3 A, using data taken with the IRAC and MIPS instruments onboard Spitzer. G 196-3 B shows markedly redder colors at all wavelengths from 1.6 up to 24 micron than expected for its spectral type, which is determined at L3 from optical and near-infrared spectra. We discuss various physical scenarios to account for its reddish nature, and conclude that a low-gravity atmosphere with enshrouded upper atmospheric layers and/or a warm dusty disk/envelope provides the most likely explanations, the two of them consistent with an age in the interval 20-300 Myr. We also present new and accurate separate proper motion measurements for G 196-3 A and B confirming that both objects are gravitationally linked and share the same motion within a few mas/yr. After integration of the combined spectrophotometric spectral energy distributions, we obtain that the difference in the bolometric magnitudes of G 196-3 A and B is 6.15 +/- 0.10 mag. Kinematic consideration of the Galactic space motions of the system for distances in the interval 15-30 pc suggests that the pair is a likely member of the Local Association, and that it lay near the past positions of young star clusters like alpha Persei less than 85 Myr ago, where the binary might have originated. At these young ages, the mass of G 196-3 B would be in the range 12-25 Mjup, close to the frontier between planets and brown dwarfs.Comment: Accepted for publication in ApJ

    Observed Variability at 1um and 4um in the Y0 Brown Dwarf WISEP J173835.52+273258.9

    Get PDF
    We have monitored photometrically the Y0 brown dwarf WISEP J173835.52+273258.9 (W1738) at both near- and mid-infrared wavelengths. This ~1 Gyr-old 400K dwarf is at a distance of 8pc and has a mass around 5 M_Jupiter. We observed W1738 using two near-infrared filters at lambda~1um, Y and J, on Gemini observatory, and two mid-infrared filters at lambda~4um, [3.6] and [4.5], on the Spitzer observatory. Twenty-four hours were spent on the source by Spitzer on each of June 30 and October 30 2013 UT. Between these observations, around 5 hours were spent on the source by Gemini on each of July 17 and August 23 2013 UT. The mid-infrared light curves show significant evolution between the two observations separated by four months. We find that a double sinusoid can be fit to the [4.5] data, where one sinusoid has a period of 6.0 +/- 0.1 hours and the other a period of 3.0 +/- 0.1 hours. The near-infrared observations suggest variability with a ~3.0 hour period, although only at a <~2 sigma confidence level. We interpret our results as showing that the Y dwarf has a 6.0 +/- 0.1 hour rotation period, with one or more large-scale surface features being the source of variability. The peak-to-peak amplitude of the light curve at [4.5] is 3%. The amplitude of the near-infrared variability, if real, may be as high as 5 to 30%. Intriguingly, this size of variability and the wavelength dependence can be reproduced by atmospheric models that include patchy KCl and Na_2S clouds and associated small changes in surface temperature. The small number of large features, and the timescale for evolution of the features, is very similar to what is seen in the atmospheres of the solar system gas giants.Comment: Accepted by ApJ July 26 2016. Twenty-six pages include 8 Figures and 5 Table

    The discovery of a T6.5 subdwarf

    Get PDF
    We report the discovery of ULAS J131610.28+075553.0, an sdT6.5 dwarf in the UKIDSS Large Area Survey 2 epoch proper motion catalogue. This object displays significant spectral peculiarity, with the largest yet seen deviations from T6 and T7 templates in the Y and K bands for this subtype. Its large, similar to 1 arcsec yr(-1), proper motion suggests a large tangential velocity of V-tan approximate to 240-340 km s(-1), if we assume its M-J lies within the typical range for T6.5 dwarfs. This makes it a candidate for membership of the Galactic halo population. However, other metal-poor T dwarfs exhibit significant under luminosity both in specific bands and bolometrically. As a result, it is likely that its velocity is somewhat smaller, and we conclude it is a likely thick disc or halo member. This object represents the only T dwarf earlier than T8 to be classified as a subdwarf, and is a significant addition to the currently small number of known unambiguously substellar subdwarfs.Peer reviewe

    Cannibalism as a life boat mechanism

    Get PDF
    Under certain conditions a cannibalistic population can survive when food for the adults is too scarce to support a non-cannibalistic population. Cannibalism can have this lifeboat effect if (i) the juveniles feed on a resource inaccessible to the adults; and (ii) the adults are cannibalistic and thus incorporate indirectly the inaccessible resource. Using a simple model we conclude that the mechanism works when, at low population densities, the average yield, in terms of new offspring, due to the energy provided by one cannibalized juvenile is larger than one

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap
    corecore