148 research outputs found

    A one-compartment, direct glucose fuel cell for powering long-term medical implants

    Get PDF
    We present the operational concept, microfabrication, and electrical performance of an enzyme-less direct glucose fuel cell for harvesting the chemical energy of glucose from body fluids. The spatial concentrations of glucose and oxygen at the electrodes of the one-compartment setup are established by self-organization, governed by the balance of electro-chemical depletion and membrane diffusion. Compared to less stable enzymatic and immunogenic microbial fuel cells, this robust approach excels with an extended life time, the amenability to sterilization and biocompatibility, showing up a clear route towards an autonomous power supply for long-term medical implants without the need of surgical replacement and external refueling. Operating in physiological phosphate buffer solution containing 0.1 wt% glucose and having a geometrical cathode area of 10 cm2, our prototype already delivers 20 µ W peak power over a period of 7 days

    A Modified High Voltage Gain Quasi-Impedance Source Coupled Inductor Multilevel Inverter for Photovoltaic Application.

    Get PDF
    The quasi-impedance source inverters/quasi-Z source inverters (Q-ZSIs) have shown improvement to overwhelmed shortcomings of regular voltage-source inverters (VSIs) and current-source inverters (CSIs) in terms of efficiency and buck-boost type operations. The Q-ZSIs encapsulated several significant merits against conventional ZSIs, i.e., realized buck/boost, inversion and power conditioning in a single power stage with improved reliability. The conventional inverters have two major problems; voltage harmonics and boosting capability, which make it impossible to prefer for renewable generation and general-purpose applications such as drive acceleration. This work has proposed a Q-ZSI with five-level six switches coupled inverter. The proposed Q-ZSI has the merits of operation, reduced passive components, higher voltage boosting capability and high efficiency. The modified space vector pulse width modulation (PWM) developed to achieve the desired control on the impedance network and inverter switching states. The proposed PWM integrates the boosting and regular inverter switching state within one sampling period. The PWM has merits such as reduction of coupled inductor size, total harmonic reduction with enhancing of the fundamental voltage profile. In comparison with other multilevel inverters (MLI), it utilizes only half of the power switch and a lower modulation index to attain higher voltage gain. The proposed inverter dealt with photovoltaic (PV) system for the stand-alone load. The proposed boost inverter topology, operating performance and control algorithm is theoretically investigated and validated through MATLAB/Simulink software and experimental upshots. The proposed topology is an attractive solution for the stand-alone and grid-connected system

    Relationships between serum adiponectin and soluble TNF-α receptors and glucose and lipid oxidation in lean and obese subjects

    Get PDF
    Insulin resistance might be associated with an impaired ability of insulin to stimulate glucose oxidation and inhibit lipid oxidation. Insulin action is also inversely associated with TNF-α system and positively related to adiponectin. The aim of the present study was to analyze the associations between serum adiponectin, soluble TNF-α receptors concentrations and the whole-body insulin sensitivity, lipid and glucose oxidation, non-oxidative glucose metabolism (NOGM) and metabolic flexibility in lean and obese subjects. We examined 53 subjects: 25 lean (BMI < 25 kg × m−2) and 28 with overweight or obesity (BMI > 25 kg × m−2) with normal glucose tolerance. Hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese subjects had lower insulin sensitivity, adiponectin and higher sTNFR1 (all P < 0.001) and sTNFR2 (P = 0.001). Insulin sensitivity was positively related to adiponectin (r = 0.49, P < 0.001) and negatively related to sTNFR1 (r = −0.40, P = 0.004) and sTNFR2 (r = −0.52, P < 0.001). Adiponectin was related to the rate of glucose (r = 0.47, P < 0.001) and lipid (r = −0.40, P = 0.003) oxidation during the clamp, NOGM (r = 0.41, P = 0.002) and metabolic flexibility (r = 0.36, P = 0.007). Serum sTNFR1 and sTNFR2 were associated with the rate of glucose (r = −0.45, P = 0.001; r = −0.51, P < 0.001, respectively) and lipid (r = 0.52, P < 0.001; r = 0.46, P = 0.001, respectively) oxidation during hyperinsulinemia, NOGM (r = −0.31, P = 0.02; r = −0.43, P = 0.002, respectively) and metabolic flexibility (r = −0.47 and r = −0.51, respectively, both P < 0.001) in an opposite manner than adiponectin. Our data suggest that soluble TNF-α receptors and adiponectin have multiple effects on glucose and lipid metabolism in obesity

    Electrostatic phase separation: a review

    Get PDF
    The current understanding and developments in the electrostatic phase separation are reviewed. The literature covers predominantly two immiscible and inter-dispersed liquids following the last review on the topic some 15 years. Electrocoalescence kinetics and governing parameters, such as the applied field, liquid properties, drop shape and flow, are considered. The unfavorable effects, such as chain formation and partial coalescence, are discussed in detail. Moreover, the prospects of microfluidics platforms, non-uniform fields, coalescence on the dielectric surfaces to enhance the electrocoalescence rate are also considered. In addition to the electrocoalescence in water-in-oil emulsions the research in oil-in-oil coalescence is also discussed. Finally the studies in electrocoalescer development and commercial devices are also surveyed. The analysis of the literature reveals that the use of pulsed DC and AC electric fields is preferred over constant DC fields for efficient coalescence; but the selection of the optimum field frequency a priori is still not possible and requires further research. Some recent studies have helped to clarify important aspects of the process such as partial coalescence and drop–drop non-coalescence. On the other hand, some key phenomena such as thin film breakup and chain formation are still unclear. Some designs of inline electrocoalescers have recently been proposed; however with limited success: the inadequate knowledge of the underlying physics still prevents this technology from leaving the realm of empiricism and fully developing in one based on rigorous scientific methodology

    Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation.

    Get PDF
    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa

    Phase Synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators

    Get PDF
    Hydrodynamic interactions play a role in synchronized motions of coupled oscillators in fluids, and understanding the mechanism will facilitate development of applications in fluid mechanics. For example, synchronization phenomenon in two-phase flow will benefit the design of future microfluidic devices, allowing spatiotemporal control of microdroplet generation without additional integration of control elements. In this work, utilizing a characteristic oscillation of adjacent interfaces between two immiscible fluids in a microfluidic platform, we discover that the system can act as a coupled oscillator, notably showing spontaneous in-phase synchronization of droplet breakup. With this observation of in-phase synchronization, the coupled droplet generator exhibits a complete set of modes of coupled oscillators, including out-of-phase synchronization and nonsynchronous modes. We present a theoretical model to elucidate how a negative feedback mechanism, tied to the distance between the interfaces, induces the in-phase synchronization. We also identify the criterion for the transition from in-phase to out-of-phase oscillations

    Policies, Political-Economy, and Swidden in Southeast Asia

    Get PDF
    For centuries swidden was an important farming practice found across the girth of Southeast Asia. Today, however, these systems are changing and sometimes disappearing at a pace never before experienced. In order to explain the demise or transitioning of swidden we need to understand the rapid and massive changes that have and are occurring in the political and economic environment in which these farmers operate. Swidden farming has always been characterized by change, but since the onset of modern independent nation states, governments and markets in Southeast Asia have transformed the terms of swiddeners’ everyday lives to a degree that is significantly different from that ever experienced before. In this paper we identified six factors that have contributed to the demise or transformation of swidden systems, and support these arguments with examples from China (Xishuangbanna), Laos, Thailand, Malaysia, and Indonesia. These trends include classifying swiddeners as ethnic minorities within nation-states, dividing the landscape into forest and permanent agriculture, expansion of forest departments and the rise of conservation, resettlement, privatization and commoditization of land and land-based production, and expansion of market infrastructure and the promotion of industrial agriculture. In addition we note a growing trend toward a transition from rural to urban livelihoods and expanding urban-labor markets

    Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation.

    Get PDF
    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.This work was supported by NIH fellowship F32 GM106584 (AG), NIH grants R01 MH101244(A.G.), R01 CA188392 (B.P.), U01 CA194393(B.P.), R01 GM107427 (M.L.F.), R01 CA193910 (M.L.F./M.P.) and Prostate Cancer Foundation Challenge Award (M.L.F./M.P.). This study makes use of data generated by the Wellcome Trust Case Control Consortium and the Wellcome Trust Sanger Institute. A full list of the investigators who contributed to the generation of the Wellcome Trust Case Control Consortium data is available on www.wtccc.org.uk. Funding for the Wellcome Trust Case Control Consortium project was provided by the Wellcome Trust under award 076113. This study makes use of data generated by the UK10K Consortium. A full list of the investigators who contributed to the generation of the data is available online (http://www.UK10K.org). The PRACTICAL consortium was supported by the following grants: European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135 and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative Grant: no. 1 U19 CA 148537-01 (the GAME-ON initiative); Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007 and C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), A Linneus Centre (Contract ID 70867902), Swedish Research Council (grant no K2010-70X-20430-04-3), the Swedish Cancer Foundation (grant no 09-0677), grants RO1CA056678, RO1CA082664 and RO1CA092579 from the US National Cancer Institute, National Institutes of Health; US National Cancer Institute (R01CA72818); support from The National Health and Medical Research Council, Australia (126402, 209057, 251533, 396414, 450104, 504700, 504702, 504715, 623204, 940394 and 614296); NIH grants CA63464, CA54281 and CA098758; US National Cancer Institute (R01CA128813, PI: J.Y. Park); Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2–2009; DFNI-B01/28/2012); Cancer Research UK grants [C8197/A10123] and [C8197/A10865]; grant code G0500966/75466; NIHR Health Technology Assessment Programme (projects 96/20/06 and 96/20/99); Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466 and The NCRI, UK; The US Dept of Defense award W81XWH-04-1-0280; Australia Project Grant [390130, 1009458] and Enabling Grant [614296 to APCB]; the Prostate Cancer Foundation of Australia (Project Grant [PG7] and Research infrastructure grant [to APCB]); NIH grant R01 CA092447; Vanderbilt-Ingram Cancer Center (P30 CA68485); Cancer Research UK [C490/A10124] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge; Competitive Research Funding of the Tampere University Hospital (9N069 and X51003); Award Number P30CA042014 from the National Cancer Institute.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/0.1038/ncomms1097
    corecore