57 research outputs found

    How to reduce long-term drift in present-day and deep-time simulations?

    Full text link
    Climate models are often affected by long-term drift that is revealed by the evolution of global variables such as the ocean temperature or the surface air temperature. This spurious trend reduces the fidelity to initial conditions and has a great influence on the equilibrium climate after long simulation times. Useful insight on the nature of the climate drift can be obtained using two global metrics, i.e. the energy imbalance at the top of the atmosphere and at the ocean surface. The former is an indicator of the limitations within a given climate model, at the level of both numerical implementation and physical parameterisations, while the latter is an indicator of the goodness of the tuning procedure. Using the MIT general circulation model, we construct different configurations with various degree of complexity (i.e. different parameterisations for the bulk cloud albedo, inclusion or not of friction heating, different bathymetry configurations) to which we apply the same tuning procedure in order to obtain control runs for fixed external forcing where the climate drift is minimised. We find that the interplay between tuning procedure and different configurations of the same climate model provides crucial information on the stability of the control runs and on the goodness of a given parameterisation. This approach is particularly relevant for constructing good-quality control runs of the geological past where huge uncertainties are found in both initial and boundary conditions. We will focus on robust results that can be generally applied to other climate models.Comment: 12 pages, 9 figures, accepted for publication in Climate Dynamic

    Palaeozoic Palaeomagnetism of South-Eastern Australia

    Get PDF
    The drift history of Gondwana following the break-up of Rodinia (or perhaps Pannotia) to the amalgamation into Pangaea has great implications in many disciplines in Earth sciences, but remains largely unknown. Among the apparent polar wander (APW) paths published for Gondwana in the last few decades, large discrepancies exist (sometimes up to thousands of kilometres). The mid Palaeozoic segment of the APW path is particularly problematic, and two primary schools of thought arise. Some authors favour a Silurian – Devonian loop in their APW path passing through southern South America (on a reconstruction of Gondwana), whereas others draw a path directly through Africa during this period. The main controversy stems essentially from whether or not palaeomagnetic data from eastern Australia are incorporated in order to compensate for the lack of mid Palaeozoic data. Determining whether the terranes of the Southern Tasmanides are (para-)autochthonous or allochthonous in origin is therefore of crucial importance and a matter of intense debate. The aim of the work presented herein is to palaeomagnetically define the positions of these terranes throughout the Palaeozoic in order to better constrain the complex tectonic history of this region and to help clarifying the APW path of Gondwana. The construction of an APW path is discussed herein. An attempt is made to determine whether only “objective” criteria can be employed to select data used to draw an APW path. However, it is shown that the palaeomagnetic database has not enough entries. Subjective data selection must be introduced leading to two end-members: the X-type and the Y-type, thought to be best illustrated by the X-path proposed by Bachtadse & Briden (1991) and the Y-path proposed by Schmidt et al. (1990). These two models are, therefore, used in the discussion of the results obtained for this study. The Southern Tasmanides had a complex tectonic history with several orogenic events throughout the Palaeozoic. The sampling coverage carried out for this study comprises fifty localities (289 sites, 1576 cores, 3969 specimens; see table 1, pages 54-55) distributed along an east-west transect across most of the subdivisions of the Southern Tasmanides. The sampled localities are gathered in three main areas: the Broken Hill area, the Mount Bowen area, and the Molong area, which are situated where no published palaeomagnetic studies were previously available providing, therefore, new information. Sampling and laboratory procedures have been carried out using standard techniques. In particular, detailed stepwise thermal demagnetisation, principal component analysis, anisotropy of magnetic susceptibility and rock magnetic measurements have been systematically employed. The routine measurement of the anisotropy of magnetic susceptibility allowed drawing the first maps of the magnetic fabrics throughout the region. A strong correlation between the magnetic fabrics and the main tectonic structures corroborates the existence of cross-structures (E-W) in the Southern Tasmanides. The directions of magnetisation obtained yielded much information, despite poor quality. The effects of weathering are deep, intense and widespread. For example, most of the samples from the Mount Arrowsmith Formation (localities ARR & ARO) and the Funeral Creek Limestone (FUN) in the Broken Hill area (western New South Wales) are totally remagnetised, as well as some from the Mitchell Formation (MIT) in the Molong area (eastern New South Wales). Secondary magnetisations are also largely responsible for the bad results obtained in most of the fifty localities studied. Intermediate directions of magnetisation are common and often result in significant data scattering, as illustrated for instance by results from the Kandie Tank Limestone (KAN; Broken Hill area) or the Ambone and Ural Volcanics (HOP, BOW, SHE; Mount Bowen area). In general, it has not been possible to precise the remagnetisation process leading to those scattering. Nevertheless, a major remagnetisation event, probably thermo-chemical in origin, has been also recognised. This event is thought to be Oligocene in age and triggered by changes in geothermal gradient prior to the onset of hot spot volcanism in the Molong area. The existence of Jurassic overprints are also suggested, in particular in the Broken Hill area, possibly in association of intrusion of mafic dykes. All other magnetic components described herein are considered Palaeozoic in age, but further constraints on age are very difficult to establish since field tests are most often not significant. Palaeopoles obtained from three localities, however, are believed to correspond to primary magnetisations. The pole from the Late Cambrian Cupala Creek Formation (CUP), confirmed by a positive unconformity test, implies that this zone can be regarded fixed relative to the craton since the Late Cambrian. In the Early Devonian Mount Daubeny Formation (DAU), the applied fold test, contact test and conglomerate test indicate the primary origin of the magnetisation carried by haematite. The corresponding pole (DAU) is, however, significantly distinct from the VGP deduced from the Early Devonian Ural Volcanics (MER) showing that at least one of the two localities has been rotated. The MER pole agrees with the remagnetisation pole associated with the Cupala Creek Formation, and favours the X-type of APW path proposed by Bachtadse & Briden (1991) for Gondwana. The outcome of this agreement contradicts the Y-type path and the existence of a Silurian – Devonian loop mainly anchored on the Early Devonian Snowy River Volcanics pole obtained by Schmidt et al. (1987). Invocation of terrane rotation, arising possibly from a pull-apart basin, may explain the discrepancy between the pole from Mount Daubeny Formation and the X-path. The most significant finding of this study is the widespread terrane rotation. This conclusion is based upon the inability of intermediate directions of magnetisation, alternate APW path for Gondwana, true polar wander or non-dipole field contribution to correctly explain the distribution of these new data. Consequently, one has to admit that block translation and rotation occurred in the Southern Tasmanides in the first half of the Palaeozoic Era and perhaps up to the Early Carboniferous. A possible scenario concerning the tectonic arrangement of blocks in the Southern Tasmanides is presented in conclusion. This palinspastic model involves block translation in the Siluro-Devonian, and rotation in the Early and more probably Middle Devonian, with late tectonic displacements and rotations in the South-Western Belt of the Lachlan Orogen in the Late Devonian to Early Carboniferous.Die Geschichte der Kontinentaldrift Gondwanas seit dem Aufbrechen Rodinias (oder vielleicht Pannotias) bis zur Angliederung an Pangea hat zwar bedeutende Auswirkungen auf viele Teildisziplinen der Geowissenschaften, ist aber weitestgehend unbekannt. Bei den scheinbaren Polwanderungskurven (SPWK), die in den letzten Jahren publiziert worden sind, gibt es große Abweichungen (mehr als tausend Kilometer). Besonders problematisch ist das Segment der SPWK wĂ€hrend des mittleren PalĂ€ozoikums. Zwei deutliche Interpretationen diese Segments werden in der wissenschaftliche Literatur kontrovers diskutiert. Einige Autoren favorisieren eine SPWK die wĂ€hrend des Silurs und Devons in einem Bogen um das sĂŒdliche SĂŒdamerika verlĂ€uft (in einer Rekonstruktion Gondwanas in afrikanischen Koordinaten), wohingegen andere Autoren die Kurve fĂŒr diesen Zeitraum direkt durch Afrika zeichnen. Der Hauptunterschied zwischen diesen beiden Modellen beruht auf der zugrundeliegenden Auswahl der palĂ€omagnetischen Daten, insbesondere ob Ergebnisse aus Ost-Australien in die Analyse mit einbezogen werden oder nicht. Dies ist von besonderer Bedeutung da gerade fĂŒr das mittlere PalĂ€ozoikum Ă€ußerst wenige Daten zur VerfĂŒgung stehen. Ausschlaggebend ist darĂŒberhinaus die Frage, ob die terranes der sĂŒdlichen Tasmaniden (para-)autochthon oder allochthon sind. Das Ziel dieser Arbeit ist die palĂ€omagnetische Bestimmung der Positionen dieser terranes wĂ€hrend des PalĂ€ozoikums, um die tektonische Entwicklung dieser komplexen Region besser zu verstehen, und somit Klarheit in den Verlauf der SPWK zu bringen. Das Verfahren zur Erstellung einer SPWK wird in Kapitel 2 dieser Arbeit diskutiert. Dazu wird untersucht, ob „objektive“ Kriterien bei der Datenauswahl fĂŒr den SPWK-Verlauf ausreichend sind. Allerdings zeigt sich, daß fĂŒr eine derartige Analyse zu wenig Eintragungen in der palĂ€omagnetischen Datenbank vorliegen. Daher muß eine „subjektive“ Selektion durchgefĂŒhrt werden. Dies fĂŒhrt zu zwei unterschiedlichen Gruppen von Ergebnissen: dem X- und Y-Typ der SPWK Gondwanas. Am besten wird der X-Typ durch die Kurve von Bachtadse und Briden (1991), der Y-Typ durch die Kurve von Schmidt et al. (1990) dargestellt. Diese beiden Möglichkeiten werden fĂŒr die Diskussion der Ergebnisse dieser Studie verwendet. Die sĂŒdlichen Tasmaniden haben eine komplexe tektonische Geschichte mit mehreren orogenen Phasen wĂ€hrend des PalĂ€ozoikums. Die Proben fĂŒr diesen Teil der Arbeit stammen von fĂŒnfzig LokalitĂ€ten (289 Probenlokationen, 1576 Kerne, 3969 Einzelproben; siehe Tabelle 1, S. 54-55), entlang eines Ost-West-Profils durch die sĂŒdlichen Tasmaniden. Zu den beprobten Einheiten lagen bisher keine veröffentlichten palĂ€omagnetischen Untersuchungen vor. Drei Beprobungsgebiete können unterschieden werden: das Broken Hill Region, das Mount Bowen Region und das Molong Region. Bei Beprobung und Laboruntersuchung wurden palĂ€omagnetische Standardtechniken angewendet. Insbesondere wurden folgende Untersuchungen systematisch durchgefĂŒhrt: detaillierte thermische Entmagnetisierung und Analyse der Richtungskomponenten sowie Messung der Anisotropie der magnetischen SuszeptibilitĂ€t und der gesteinsmagnetischen Eigenschaften. Anhand der Anisotropie der magnetischen SuszeptibilitĂ€t konnte eine Karte des magnetischen GefĂŒges der Region erstellt werden. Neben der starke Korrelation des magnetischen GefĂŒges mit den charakteristischen tektonischen Strukturen (N-S) der Region zeigen die Daten auch die Existenz von ost-west gerichteten Störungen. Die oftmals sehr komplexen Magnetisierungsrichtungen liefern wertvolle Informationen. Die beprobten Gesteine sind generell stark und tiefgreifend verwittert. So sind beispielsweise die Proben von der Mount Arrowsmith Formation (LokalitĂ€ten ARR & ARO) und die Kalksteine des Funeral Creeks (FUN) in der Region von Broken Hill (westliches New South Wales) vollstĂ€ndig remagnetisiert. Dies gilt auch fĂŒr einige Proben von der Mitchell Formation in der Region von Molong (östliches New South Wales). Starke sekundĂ€re ÜberprĂ€gungen der Magnetisierung werden auch bei den Proben der ĂŒbrigen LokalitĂ€ten beobachtet. Nicht immer war es möglich die verschiedenen Remanenzkomponenten eindeutig zu isolieren. Dies fĂŒhrt zu einer starken Streuung der Richtungen, wie es unter anderem bei den LokalitĂ€ten der Kandie Tank Kalksteine (KAN, Broken Hill) oder der Ambone und Ural Vulkaniten (HOP, BOW, SHE, Mount Bowen) der Fall ist. All diese Remagnetsierungen können nicht einem einzelnen Remagnetisierungs-prozess zugeordnet werden. In einigen FĂ€llen allerdings zeigen die ÜberprĂ€gungen konsistente Richtungen. Diese Remagnetisierung ist wahrscheinlich thermo-chemischen Ursprungs und wurde im OligozĂ€n erworben. Man nimmt an, daß sie durch VerĂ€nderung des geothermischen Gradienten vor dem Einsetzen des Hotspot Vulkanismus in der Region von Molong ausgelöst wurde. Die Existenz jurassischer ÜberprĂ€gungen, besonders in der Region von Broken Hill, kann auf die Intrusion mafischer GĂ€nge zurĂŒckgefĂŒhrt werden. Alle anderen in dieser Arbeit beschriebenen Magnetisierungskomponenten werden als Remanenzen palĂ€ozoischen Alters interpretiert. Eine genauere zeitliche Einordnung des Remanenzerwerbs dieser Komponenten gestaltet sich schwierig da die palĂ€omagnetischen Tests oft insignifikante Ergebnisse liefern. Die Resultate von drei LokalitĂ€ten werden allerdings als primĂ€re palĂ€ozoische Magnetisierungen betrachtet. Der PalĂ€opol der spĂ€tkambrischen Cupala Creek Formation (CUP) ist durch einen positiven Diskordanz Test verifiziert. Dieser PalĂ€opol belegt, daß sich diese Region relativ zu dem Kraton seit dem spĂ€ten Kambrium nicht bewegt hat. Die charakteristische Magnetisierung der frĂŒhdevonischen Mount Daubeny Formation (DAU) wird von HĂ€matit getragen. Sowohl der Faltentest als auch der Kontakt- und Konglomerattest zeigen das diese Magnetisierungs-komponente primĂ€r ist. Der sich ergebende PalĂ€opol weicht allerdings signifikant von dem virtuelle geomagnetische Pol (VGP) der frĂŒhdevonischen Ural Vulkanite (MER) ab. Es muß daher eine relative Rotation der beiden Einheiten gegeneinander angenommen werden. Der MER Pol ist konsistent mit dem remagnetisierten Pol der Cupala Creek Formation und unterstĂŒtzt die Hypothese von Bachtadse und Briden (1991) einer SPWK des X-Typs fĂŒr Gondwana. Der silurische-devonische Bogen in der SPWK nach dem Y-Typ, der hauptsĂ€chlich auf den Daten der devonische Vulkanite des Snowy Rivers (Schmidt et al., 1987) basiert, kann daher ausgeschlossen werden. Die Abweichung des Pols der Mount Daubeny Formation vom Pfad des X-Typs kann mit einer Terranrotation, möglicherweise in Folge der Bildung eines „Pull-Apart-Basins“, erklĂ€rt werden. Das Hauptergebniss dieser Arbeit ist der Nachweis verbreiteter Rotationen der einzelnen Terrane der sĂŒdlichen Tasmaniden. Die meisten der beobachteten PalĂ€opole können weder durch die Verwendung der zwei konkurierenden SPWK-Modelle noch durch andere Effekte wie „True-Polar-Wander“ oder Nicht-Dipol Anteile des Erdmagnetfeldes erklĂ€rt werden. Nur unter Annahme von Blocktranslationen und –rotationen in der ersten HĂ€lfte des PalĂ€ozoikums, oder auch bis in das frĂŒhe Karbon, lassen sich die Beobachtungen in Einklang bringen. Ein Szenario fĂŒr die Verteilung der einzelnen Terrane in den sĂŒdlichen Tasmaniden wird in Kapitel 8 entwickelt. Dieses palĂ€ogeographische Modell beinhaltet Blocktranslationen im Silur/Devon. Rotation treten in diesem Modell im frĂŒhen bis mittleren Devon auf. SpĂ€tere tektonische Verschiebungen und Rotationen im sĂŒdwestlichen GĂŒrtel des Lachlan Orogens sind demnach vom spĂ€ten Devon bis zum frĂŒhen Karbon zu beobachten

    Trophic and tectonic limits to the global increase of marine invertebrate diversity

    Get PDF
    9 pages, 3 figures, supplementary material https://doi.org/10.1038/s41598-017-16257-wThe marine invertebrate fossil record provides the most comprehensive history of how the diversity of animal life has evolved through time. One of the main features of this record is a modest rise in diversity over nearly a half-billion years. The long-standing view is that ecological interactions such as resource competition and predation set upper limits to global diversity, which, in the absence of external perturbations, is maintained indefinitely at equilibrium. However, the effect of mechanisms associated with the history of the seafloor, and their influence on the creation and destruction of marine benthic habitats, has not been explored. Here we use statistical methods for causal inference to investigate the drivers of marine invertebrate diversity dynamics through the Phanerozoic. We find that diversity dynamics responded to secular variations in marine food supply, substantiating the idea that global species richness is regulated by resource availability. Once diversity was corrected for changes in food resource availability, its dynamics were causally linked to the age of the subducting oceanic crust. We suggest that the time elapsed between the formation (at mid-ocean ridges) and destruction (at subduction zones) of ocean basins influences the diversity dynamics of marine invertebrates and may have contributed to constrain their diversificationP.C. was supported by a RamĂłn y Cajal contract from the Spanish Government. This research was funded by the Spanish Government through research grant CTM2014-54926-R.Peer Reviewe

    A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)

    Get PDF
    The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutionary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha

    Modélisation numérique de l'érosion glaciaire

    No full text
    Les relations entre les reliefs et le climat divisent la communautĂ© scientifique. L'objectif initial de ce travail Ă©tait d'essayer de voir, Ă  l'aide d'un modĂšle numĂ©rique, si les glaciers avaient une capacitĂ© Ă©rosive plus importante que l'Ă©rosion fluviatile, et donc de savoir, si le climat plio-quaternaire plus rigoureux avait pu intervenir de maniĂšre forte sur la formation du relief des chaĂźnes de montagnes. Pour crĂ©er un modĂšle, il faut d'abord pouvoir schĂ©matiser la formation et l'Ă©volution des appareils glaciaires, et identifier les paramĂštres fondamentaux qui contrĂŽlent le systĂšme. Ces processus peuvent alors ĂȘtre mis en Ă©quations, et intĂ©grĂ©s dans un algorithme simple. Les Ă©quations trouvĂ©es dans la littĂ©rature dĂ©crivant la construction des glaciers, sont en fait empiriques. Elles semblent ĂȘtre uniquement valables pour des rĂ©gions bien dĂ©terminĂ©es. C'est pourquoi, leurs utilisations dans nos modĂ©lisations de l'Ă©rosion glaciaire n'ont pas permis aux simulations d'aboutir. Cette Ă©rosion n'Ă©tant qu'une rĂ©sultante de la morphologie et de la dynamique, la construction correcte des glaciers est primordiale. Nous avons alors Ă©tabli des formules trĂšs simples, qui soient applicables Ă  un plus large domaine. Elles nous ont permis de mettre en lumiĂšre les raisons qui dĂ©stabilisent le modĂšle, ainsi que le comportement singulier des glaciers. D'un point de vue numĂ©rique, une mĂ©thode de calcul non dĂ©pendante de la taille du pas de temps serait plus adĂ©quate. Par ailleurs, une formulation plus rĂ©aliste des vitesses de la glace est nĂ©cessaire pour Ă©viter l'apparition d'instabilitĂ©s numĂ©riques. Du point de vue comportemental, les rĂ©ponses du modĂšle suggĂšrent que les appareils glaciaires sont extrĂȘmement sensibles aux conditions climatiques et Ă  leurs variations

    Reply to comments by G. Shanmugam (2015) and A. J. (Tom) van Loon (2015) on “3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations”

    Get PDF
    I use to say that in science, one cannot say what is right, but one can say what is wrong. And a model is, by definition, wrong, otherwise it is not a model, it is the truth. Being aware that a model aims to mimic the truth but will never be the truth, the only worth questions asking to a model are: (1) How wrong are we? And (2) Why are we wrong? The latter questions the foundations of the model, and is mainly the concerns of A. J. (Tom) van Loon's comments (2015, this issue). The first questions the accuracy of the outcomes, and corresponds more to G. Shanmugam's comments (2015, this issue). I am glad that our paper has aroused so rapidly as much feedbacks and comments, sometimes even before the manuscript is definitely published. We hope this paper will keep on inspiring various axes of research and opening new avenues in geosciences. Detailed answers to the comments raised by A. J. (Tom) van Loon and G. Shanmugam among others would certainly deserve a book, so my reply will just focus herein around the two aforementioned questions

    Geodynamic Reconstructions of the Australides—2: Mesozoic–Cainozoic

    No full text
    The present work, derived from a full global geodynamic reconstruction model over 600 Ma and based on a large database, focuses herein on the interaction between the Pacific, Australian and Antarctic plates since 200 Ma, and proposes integrated solutions for a coherent, physically consistent scenario. The evolution of the Australia–Antarctica–West Pacific plate system is dependent on the Gondwana fit chosen for the reconstruction. Our fit, as defined for the latest Triassic, implies an original scenario for the evolution of the region, in particular for the “early” opening history of the Tasman Sea. The interaction with the Pacific, moreover, is characterised by many magmatic arc migrations and ocean openings, which are stopped by arc–arc collision, arc–spreading axis collision, or arc–oceanic plateau collision, and subduction reversals. Mid-Pacific oceanic plateaus created in the model are much wider than they are on present-day maps, and although they were subducted to a large extent, they were able to stop subduction. We also suggest that adduction processes (i.e., re-emergence of subducted material) may have played an important role, in particular along the plate limit now represented by the Alpine Fault in New Zealand

    Tracking back Permian--Triassic sections from Oman over the Mesozoic --Cenozoic: Geodynamic and paleogeographic implications

    Get PDF
    Three sections from Oman Wadi Musjah, Jebel Rabat A, and Jebel Aweri spanning the Changhsingian (Upper Permian) to Olenekian (Lower Triassic) are studied in detail to investigate changes in seawater chemistry during this interval (see other posters). We here define their paléo-location and paléogeography through time using the PANALESIS plate tectonic model. We propose that the sections of Wadi Musjah and Jebel Rabat A were part of a seamount (or seamount chain) located at some 900 km relative to where they are found now. The seamount(s) was (were) caught in the subduction prism of the Hawasina nappes and transported towards the Omani margin, before the Semail plate obduction brought them onto the passive margin where they are currently located. The third section Jebel Aweri has a different history. As part of the Batain Mountains, the section is proposed to belong to the Masirah tectonic element, a zone along the eastern Oman and Yemen margin, which underwent a transpressive motion, in particular in the Late Cretaceous – Paléogene when the India tectonic plate rotated relative to the Africa plate, triggering a ‘scissor effect’ with up to 250 km shortening and thrusting onto the Oman – Yemen passive margin. We infer that the “Eastern Ophiolite Belt” from the Masirah Island and metamorphism in the Batain is associated with this event
    • 

    corecore