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Introduction

Osteoglossomorpha – the bony-tongue fishes – have been 
the focus of a great deal of morphological, systematic, and 
evolutionary study, due in part to their basal position among 
extant teleostean fishes (e.g., Greenwood et al., 1966; Nel-
son, 1969; Greenwood, 1973; Taverne, 1979, 1998; Li, Wil-
son, 1996a; Hilton, 2003; Wilson, Murray, 2008). Among the 
world’s extant ichthyofaunal, this is a widespread group of 
primary freshwater fishes, including the neotropical gene-
ra Arapaima and Osteoglossum, the North American genus 

Hiodon, and several Old-World groups, including the Mor-
myridae, Gymnarchus, Pantodon, Heterotis (Africa), No-
topteridae (Africa and Southeast Asia), and the Australasian 
genus Scleropages. In addition, this morphologically hetero-
geneous group has a long and diverse fossil record, including 
taxa from all continents and both freshwater and marine depo-
sits (Forey, Hilton, 2010). In their pivotal classification, Gre-
enwood et al. (1966) formally established the modern con-
ceptualization of crown-group Osteoglossomorpha, although 
all families had been more or less associated with one another 
by ichthyologists for some time (e.g., Ridewood, 1904, 1905; 
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Os peixes da Superordem Osteoglossomorpha têm sido foco de inúmeros estudos sobre a morfologia, sistemática e evo-
lução, particularmente devido à sua posição basal dentre os peixes teleósteos. Fazem parte deste grupo os “mooneyes” 
(Hiodontidae), “knifefishes” (Notopteridae), o “abu” (Gymnarchidae), peixes-elefante (Mormyridae), aruanãs e pirarucu 
(Osteoglossidae), e o peixe-borboleta africano (Pantodontidae). Esse grupo de morfologia heterogênea possui um longo e 
diverso registro fóssil, incluindo táxons de todos os continentes, oriundos tanto de depósitos de água doce quanto marinhos. 
As relações filogenéticas dentre a maioria das famílias de osteoglossomorfos é amplamente aceita. Entretanto, há muito a ser 
descoberto sobre a sistemática biológica desses peixes, particularmente com relação às afinidades filogenéticas de inúmeros 
fósseis, relações dentro de Mormyridae, e a posição filogenética de Pantodon. Neste manuscrito nós revisamos o atual esta-
do de conhecimento dos peixes osteoglossomorfos. Nós primeiramente provemos uma abordagem geral da diversidade de 
Osteoglossomorpha, e então discutimos os estudos filogenéticos sobre Osteoglossomorpha sob a perspectiva morfológica e 
molecular, assim como uma análise biogeográfica do grupo. Finalmente, oferecemos nossas perspectivas sobre os futuros 
passos para pesquisa sobre a sistemática biológica de Osteoglossomorpha.
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Garstang, 1931; Gosline, 1960). Two characters were offered 
to support this grouping: the presence of a so-called “paras-
phenoid-tongue bite” and the presence of “paired, usually os-
sified, rods at the base of the second gill arch” (Greenwood et 
al., 1966:361). Although both of these characters have been 
shown to be complex characters, with different aspects of 
each defining different subgroups within Osteoglossomorpha 
(Hilton, 2001), the monophyly of the group has been well es-
tablished and accepted (see discussion by Hilton, 2003).

The importance of Osteoglossomorpha for understan-
ding early teleostean evolution has been long appreciated 
(e.g., Greenwood, 1973; Patterson, Rosen, 1977; Patterson, 
1977; Arratia, 1997). Osteoglossomorpha was among the 
first vertebrate taxa to have their relationships analyzed in 
a cladistic framework (e.g., Nelson, 1968), and have also 
been used to exemplify general patterns, for instance, of bio-
geography (Nelson, 1969; Patterson, 1981). Based on a se-
ries of osteological descriptions (e.g., Taverne, 1972, 1977, 
1978), Taverne (1979) first proposed the general pattern of 
relationships among extant taxa that is widely adopted to-
day, namely that Hiodontidae is the sister group of all other 
extant osteoglossomorphs, Notopteridae and Mormyroidea 
(Gymnarchidae + Mormyridae) are each other’s closest rela-
tives, and Osteoglossidae has two subfamilies (Arapaima + 
Heterotis and Osteoglossum + Scleropages, with Pantodon 
more closely related to the latter). This set of relationships 
was maintained by Li, Wilson (1996a), the first published 
computer-assisted cladistic analysis of Osteoglossomorpha. 
In the last 25 years there have been several studies of the 
relationships within Osteoglossomorpha, with broad con-
gruence (with only a few exceptions) regarding their rela-
tionships, at least among extant taxa. However, there is still 
much to discover about these fishes, particularly with regard 
to the phylogenetic affinities of several fossil taxa and the 
position of Pantodon. The most recent review of the Oste-
oglossomorpha was conducted by Wilson, Murray (2008). 
Since that review, there have been numerous new data pu-
blished on their morphology, many new fossil taxa described 
or redescribed, as well as renewed study of their biogeogra-

phy and their phylogeny based on genetic data. Osteoglos-
somorpha is at the same time both a well-studied taxon and 
one in need of new and focused study at all levels.

In this paper we review the state of knowledge for oste-
oglossomorph fishes, emphasizing studies published since 
Wilson, Murray (2008). We first provide an overview of the 
diversity of Osteoglossomorpha, using the family-level ta-
xonomy presented by Nelson et al. (2016) as a framework 
for this discussion. We then discuss studies of the phylo-
geny of Osteoglossomorpha from both morphological and 
molecular perspectives, as well as biogeographical analyses 
of the group, with a particular emphasis on recent studies; 
the earlier history of the study of this group is described in 
more detail by Greenwood et al. (1966), Hilton (2003) and 
Wilson, Murray (2008). Finally, we offer our perspectives 
on future needs for research on the systematic biology of 
Osteoglossomorpha.

Diversity of Osteoglossomorpha
†Lycopteridae and other Stem-Group Osteoglosso-

morpha. †Ichthyodectiformes, a group of predatory Jurassic 
and Cretaceous fishes (Cavin et al., 2013), had been closely 
associated with Osteoglossomorpha (e.g., potentially within 
Osteoglossomorpha by Greenwood et al., 1966; Taverne, 
1979), due in part to general body form and superficial si-
milarity. It was shown by Patterson, Rosen (1977), however, 
that †Ichthyodectiformes was best interpreted as a stem-
-group Teleostei, phylogenetically separate from Osteoglos-
somorpha, and this has been supported in recent analyses 
of relationships among basal teleostean fishes (e.g., Arratia 
1997, 1999, 2008).

Members of †Lycopteridae (Fig. 1) are a group of gene-
ralized, plesiomorphic osteoglossomorph fishes. According 
to Nelson et al. (2016), three genera are included in the fa-
mily (†Lycoptera, †Jiuquanichthys, and †Kuyangichthys), 
although Zhang (2006) found the relationships of all of these 
basal genera to be largely unresolved along the stem of Os-
teoglossomorpha. The recently described monotypic genus 
†Kokuraichthys from the Early Cretaceous of Japan was in-

Fig. 1. †Lycopteridae. Lycoptera davidi, Early Cretaceous, China (UMA F10652; 110 mm SL). Scale bar = 2 cm.
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Fig. 2. Stem-group Osteoglossomorpha. Reconstructions of a. †Tongxinichthys microdus (modified from Zhang, Jin, 1999: 
fig. 2), b. †Kuntulunia longipterus (modified from Zhang, 1998: fig. 11), and c. †Tanolepis ningjiagouensis (modified from 
Jin, 1991: fig. 1; note that †Tanolepis has been suggested to be a synonym of †Paralycoptera).

terpreted to be either a member of †Lycopteriformes (co-ex-
tensive with †Lycopteridae) or Hiodontiformes (Yabumoto, 
2013). A number of possible stem-group osteoglossomorphs 
have been identified, but not assigned to a specific family 
(including some taxa included within †Lycopteridae). Wi-
thout exception, these fishes come from Early Cretaceous 
deposits in Asia, primarily China. Included among these 

taxa are †Jinanichthys, †Tongxinichthys (Fig. 2a; see Zhang, 
Jin, 1999), and †Xixiaichthys.

The group †Huashia + †Kuntulunia (Fig. 2b) has been 
interpreted as both a stem-group (e.g., unresolved node with 
Hiodontiformes and all other osteoglossomorphs; Zhang, 
2006), sister to Notopteroidei + Osteoglossidae (Zhang, 
1998), or as more closely related to Arapaiminae (e.g., ba-
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sed in part on preopercular and opercular shape; Li, Wilson, 
1999). Similarly, †Paralycoptera, from the Early Creta-
ceous (or possibly Late Jurassic as well; Tse et al., 2015) of 
China, was initially described as a member of †Lycopteri-
formes (Chang, Chou, 1977); †Tanolepis (Fig. 2c; Jin, 1991) 
is either a synonym (Jin et al., 1995; Xu, Chang, 2009) or 
sister-group (Li, Wilson, 1999) of †Paralycoptera. Ma, Sun 
(1988) and Jin et al. (1995) suggested that it possessed re-
ticulate scales, indicating an affinity to Osteoglossidae (al-
though concluding that† Paralycoptera was within crown 
Osteoglossidae, Zhang, 2006 noted differences in the de-
tails of the pattern of reticulation between the two groups). 
However, Xu, Chang (2009: figs. 8c,d) studied and illustra-
ted very well preserved specimens that preserved the details 
of the scales, and show that these do not bear any furrows, 
but rather are large cycloid scales with fine circuli and a few 
radii (and are similar in overall form to the scales of Panto-
don; Hilton, 2003: fig. 39d). Li, Wilson (1999) recovered it 
as sister to Osteoglossoidei (sharing similarities in the po-
sition and angle of the jaw and six hypurals), Zhang (2006) 
found it to be within crown-group Osteoglossidae (sister to 
Osteoglossinae + †Phareodontinae; supported only by ho-
moplasies), and Xu, Chang (2009), who found this genus 
to be intercalated between Mormyroidea and all fossil and 
living Osteoglossidae (sharing with the latter the condition 
of having the entire post- and suborbital region of the pa-
latoquadrate covered by the infraorbitals). Wilson, Murray 
(2008; also Murray et al., 2010, 2018), in contrast, recove-
red †Paralycoptera + †Tanolepis as a stem group osteoglos-
somorph, just above the level of †Lycoptera. For details on 
the history of phylogenetic hypotheses for these and other 
stem-group osteoglossomorphs, including synapomorphies 
supporting the various hypotheses, the reader is referred 
to Shen (1996), Li, Wilson (1999), Zhang (2006), and Xu, 
Chang (2009). A full taxonomic and phylogenetic review, 
however, of many of these fishes, including those that were 
historically included in †Lycopteridae, is needed.

Hiodontidae. Hiodontidae (Fig. 3), which is regarded 
as the living sister group of all other extant Osteoglosso-
morpha (Taverne, 1979; Li, Wilson, 1996a; Hilton, 2003; 
Zhang, 2006; Wilson Murray, 2008), with one or two ge-
nera (Hiodon and †Eohiodon); the fossil taxa †Yanbiania 
and †Jiaohichthys from the Early Cretaceous of China and 
†Plesiolycoptera from the Mid Cretaceous of China are 
stem group Hiodontiformes. Hiodon comprises two extant 
species (H. alosoides and H. tergisus), both found exclusi-
vely in the freshwater rivers and lakes throughout much of 
North America east of the Rocky Mountains. These fishes 
have a generalized, laterally compressed body, with large 
eyes, a forked caudal fin, and a silvery body with cycloid 
scales (Hilton et al., 2014). The parasphenoid and basihyal 
toothplate are armed with large, caniniform teeth that serve 
the so-called “parasphenoid-tongue bite apparatus” (Hilton, 
2001). The osteology of Hiodon has been described by Ta-
verne (1977) and Hilton (2002), with specific aspects of its 

skeleton described by others (e.g., caudal skeleton, Schultze, 
Arratia, 1988) due in part to its overall plesiomorphic mor-
phology, which has led to its use as a representative basal 
teleost in broad based systematic analyses (see discussion 
and references by Hilton, 2002).

The three species of †Eohiodon from the Early Eocene 
of western North America have been regarded as close re-
latives of the extant genus Hiodon (Li et al., 1997a; Hilton, 
Grande, 2008; Fig. 3b). Indeed, because of the absence of 
any synapomorphies distinguishing the species of †Eohio-
don from those of Hiodon, Hilton, Grande (2008) regarded 
it as a synonym of Hiodon. The two extant species of Hio-
don possess a post-pelvic bone, and this is considered a sy-
napomorphy of the extant taxa (Hilton, 2003), although the 
condition in most fossil taxa, including †H. consteniorum 
and the species of †Eohiodon, is unknown (Hilton, 2003). 
Murray et al. (2010: fig. 10) illustrated a fragmentary bone 
that they interpreted as a postpelvic bone in †Schuleichthys 
brachypteryx, a species from the Early Cretaceous of China 
that was left as incertae sedis at the base of Osteoglosso-
morpha. These authors suggested that the presence of a pos-
tpelvic bone in †Schuleichthys was a character of a broader 
group and therefore resurrected the genus †Eohiodon (see 
also Murray et al., 2018). However, we find the published 
photograph documenting the postpelvic bone in †Schuleich-
thys to be unconvincing, and maintain that until this element 
is clearly seen in taxa outside of the extant taxa, it should be 
considered to be a synapomorphy of these two extant taxa. 
Regardless, there has yet to be any synapomorphies iden-
tified that group the taxa previously included in the genus 
†Eohiodon (i.e., all diagnostic characters cited for the genus, 
such as low vertebral and fin ray counts, are plesiomorphic, 
being similar to stem group Hiodontiformes and †Lycop-
teridae). We therefore support the interpretation that those 
taxa previously included in †Eohiodon should be regarded 
as stem group Hiodon (Hilton, Grande, 2008).

Notopteridae. The featherbacks, or Old World knife-
fishes, of the family Notopteridae comprise ten species in 
four genera distributed in the freshwaters of south and sou-
theast Asia (Chitala, six species; Notopterus, one species; 
Fig. 4) and Africa (Papyrocranus, two species; Xenomystus, 
one species; Fig. 5) (Kottelat, 2013). The taxonomy of this 
family was revised by Roberts (1992), who noted that more 
material is needed to be examined from across the ranges of 
Notopterus and Xenomystus to better investigate the monos-
pecific nature of these two genera. A single whole body fos-
sil taxon (†Notopterus primaevus, from the Tertiary of Su-
matra; Sanders, 1934) is known, but is in need of preparation 
and redescription. †Palaeonotopterus greenwoodi, from the 
Early Cretaceous of Morocco, was initially described based 
on isolated braincase and fragmentary skull bones (Forey, 
1997, Taverne, Maisey, 1999) as a member of Notopteridae 
based on the presence of a supraorbital branch of the otic 
sensory canal, although this character was since identified in 
mormyroids (Cavin, Forey, 2001). Cavin, Forey (2001) con-
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sidered †Palaeonotopterus greenwoodi to be either a stem 
notopterid or a stem mormyroid, and in subsequent phylo-
genetic analysis, it has been recovered as a stem group mor-
myroid (Hilton, 2003; Wilson, Murray, 2008). As noted by 
Cavin, Forey (2001), however, its anatomy is largely unk-
nown and prevents confident phylogenetic interpretations.

All notopterids are extremely laterally compressed with 
an elongate anal fin that is confluent with the rounded caudal 
fin. The dorsal fin (absent in Xenomystus) has a short base 
but is tall and rounded. The body profile particularly that of 
Chitala, undergoes a dramatic ontogenetic change, in whi-
ch there is a substantial dorsal concavity above the head in 
adult fishes (not evident in Notopterus or Xenomystus, and 
only slightly developed in Papyrocranus). All species have a 
series of small abdominal scutes formed by paired elements 
(Hilton, 2003: fig. 34). The species of Xenomystus and Pa-
pyrocranus are electroreceptive, whereas those of Notopte-
rus and Chitala are not (Bradford, 1982).

Notopteridae is widely regarded as the sister group of 
Mormyroidea (= Mormyridae + Gymnarchidae) based on 
both morphological (Ridewood, 1904, 1905; Taverne, 1979; 

Lauder, Liem, 1983; Li, Wilson, 1996a) and molecular data 
(Lavoué, Sullivan, 2004). Hilton’s (2003) analysis resulted 
in a Notopteridae + Osteoglossidae clade, but he allowed 
that there were several characters that were not included in 
that analysis that supported the conventional grouping, as 
found in more recent phylogenetic analyses (Bonde, 2008; 
Wilson, Murray, 2008; Murray et al., 2010, 2018).

Mormyridae. By far Mormyridae is the largest family 
of Osteoglossomorpha. It has about 21 genera and well 
over 200 species (Fricke et al., 2018); the rate of new spe-
cies descriptions in recent years suggests that there are far 
more to be discovered (e.g., a new genus, Cryptomyrus, was 
described recently from Gabon, suggesting that there are 
significant gaps in our knowledge of mormyrid diversity; 
Sullivan et al., 2016). All members of the family are found 
throughout Africa (except the Saharan, northern Maghreb, 
and southern Cape regions), and are particularly diverse in 
Central and West Africa (Stiassny et al., 2007). The earliest 
fossil remains of the family, comprising fragmentary skull 
bones, teeth, and isolated vertebrae, are Middle Pliocene 

Fig. 3. Hiodontidae. a. Hiodon alosoides (VIMS 12099). b. †Hiodon falcatus, Eocene, Wyoming, USA (UMA F10651). 
Scale bars = 2 cm.
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(Greenwood, 1972), although the family is very poorly re-
presented in the fossil record. Hilton (2003) noted the irony 
of this, as this family is the most species rich in the extant 
fauna, but most other families have a much more temporally 
and taxonomically extensive fossil record. The diversity of 
the family, established in part by fast evolution of reproduc-
tive isolation caused by selection in mate recognition sig-
nals (i.e., electric organ discharges), is pronounced and the 
family has been cited as the only example of a freshwater 
species flock in a riverine (vs. lacustrine) system (Sullivan 
et al., 2002). All members of the family are weakly electric 
fishes, having both electroreceptors, and producing species-
specific electric organ discharges for communication and 
localization purposes. There is great morphological diver-
sity within this family in body form, but especially of their 
head shape, which ranges from blunt and rounded (e.g., Pe-
trocephalus, Fig. 6a; Pollimyrus), to elongate, with a long 
snout and jaws (e.g., Gnathonemus and Campylomormyrus; 

Figs. 6b,c). The cranial diversity of certain taxa within the 
family, such as Campylomormyrus, has been suggested to 
reflect adaptive radiation driven by variation in diet (Feul-
ner et al., 2007). Mormyridae (inclusive of Gymnarchidae; 
see below) all share an enlarged cerebellum, electric organs, 
electroreceptors, opercular bones covered by a thick fleshy 
flap, an intracranial diverticulum of the swim bladder, loss 
of the ventral hypohyal, absence of the basihyal and its 
toothplate, and features of the caudal skeleton (Boulenger, 
1898; Taverne, 1972, 1979; Hilton, 2003).

The systematics of Mormyridae has not been investiga-
ted recently from a morphological perspective (see Future 
Research Needs, below). The most taxonomically rich data 
set to be analyzed to date is that of Sullivan et al. (2000), who 
investigated relationships among representatives of 18 gene-
ra and 41 species using mitochondrial (12S and 16S rRNAs, 
Cytochrome b) and nuclear (RAG2) loci. The results of this 
analysis are largely congruent with those of Taverne (1972) 

Fig. 4. Notopterinae. a. Notopterus notopterus (UF 237410; 167 mm SL). b. Chitala ornata (UF 237959; 498 mm SL). Pho-
tos by Z. Randall.
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at the higher taxonomical-levels, in that Gymnarchidae is its 
sister group, and the family can be divided into the Petro-
cephalinae (with only Petrocephalus) and Mormyrinae (all 
other genera). Within Mormyrinae, Myomyrus macrops, and 
Mormyrops spp. were recovered as successive sister groups 
to all other members of the subfamily. Notable results also 
included the non-monophyly of Brienomyrus, Pollimyrus, 
Marcusenius, and Hippopotamyrus. Based on this topolo-
gy, the authors conclude that electrocytes with penetrating 
stalks is a derived conditions but they evolved early in the 
evolution of Mormyrinae; the electrocytes of Gymnarchus 
are stalkless (hypothesized to be the larval form of elec-
trocytes found in Mormyridae) and those of Petrocephalus 
have non-penetrating stalks. There are several occurrences, 
presumably homoplastic, of reversal to the non-penetrating 
condition (e.g., within Brienomyrus, Paramormyrops, Mar-
cusenius, and Campylomormyrus), although the taxon sam-
pling in these genera was insufficient to draw firm conclu-
sions of the number of reversals within Mormyrinae. Other 
previous phylogenetic studies, reviewed by Sullivan et al. 
(2000), include Agnèse, Bigorne (1992), Van der Bank, Kra-
mer (1996), Alves-Gomes, Hopkins (1997), Alves-Gomes 
(1999), and Lavoué et al. (2000). Recent molecular phylo-
genetic studies of relationships of Mormyrinae include those 

of Sullivan et al. (2016) and Levin, Golubtsov (2018), and 
provide further evidence that the taxonomy and phylogeny 
of Mormyridae is far from settled.

Gymnarchidae. A single species, Gymnarchus niloticus, 
is included in this family (Fig. 7), and is found distributed 
throughout tropical Africa from Senegal to Ethiopia in the 
Ghazal and Jebel systems, White Nile, and Nile River to 
Lake Nasser (Sudan) in northeast Africa, and in the Gam-
bia, Senegal, Niger, Volta, Ouémé and Chad rivers of western 
Africa (Azeroual et al., 2010). It has an elongate, cylindrical 
body with a broadly rounded head and a dorsal fin that runs 
most of the length of its body; anal, caudal, and pelvic fins 
are lacking. It reaches 1.67 m in length and 18.5 kg (Bigorne, 
1990). Its osteology has been described by Taverne (1972), 
and aspects of its skeleton are illustrated by Benveniste 
(1994). Fossil remains identified as Gymnarchus are known 
from several localities throughout central and northern Afri-
ca (e.g., Pliocene deposits of Chad, Otero et al., 2009), in-
cluding the Late Eocene Birket Qarun Formation in Egypt 
(Murray et al., 2010), which is the oldest record of the family.

Gymnarchidae is broadly considered to be the sister 
group of Mormyridae (Taverne, 1979, 1998; Bonde, 2008; 
classified as a subfamily of Mormyridae in some classifica-

Fig. 5. Xenomystinae. a. Xenomystus nigri (CU 91453). b. Papyrocranus afer (CU 97661). Scale bars = 2 cm.
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Fig. 6. Mormyridae. a. Petrocephalus bovei (CU 94594). b. Gnathonemus petersii (CU 91805). c. Campylomormyrus taman-
dua (CU 91801). Scale bars = 2 cm.

Fig. 7. Gymnarchidae. Gymnarchus niloticus (VIMS 22064). Scale bar = 2 cm.
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tions, e.g., Greenwood, 1971; Lauder, Liem, 1983), althou-
gh in most analyses and classifications it is not explicitly 
coded for, being subsumed into the supraspecific termi-
nal group Mormyroidea (e.g., Li, Wilson, 1996a; Wilson, 
Murray 2008) or left uncoded (e.g., Hilton, 2003; Zhang, 
2006). Although she did not designate it as a monotypic 
family, Benveniste (1994) recovered Gymnarchus as the 
sister-group of Petrocephalus + Mormyrinae. In this study, 
several unambiguous autapomorphies were identified distin-
guishing Gymnarchus from other mormyroids (absence of 
a supraoccipital crest, absence of basibranchial toothplates, 
absence of the first pharyngobranchial, absence of supraneu-
rals, absence of the caudal fin, a dorsal fin with more than 
100 fin rays, absence of an anal fin, a small posttemporal 
bone formed primarily by the ventral limb, the condition of 
having the m. posterior intermandibularis absent and the m. 
interhyoideus present); Gymnarchus also has an edentulous 
parasphenoid, although this is homoplastically found within 
Osteoglossomorpha in Heterotis and some mormyrids (Ben-
veniste, 1994).

Osteoglossidae. Outside of Mormyridae, Osteoglossidae 
is the most diverse family of Osteoglossomorpha, with four 
extant genera, classified in two subfamilies (Osteoglossinae, 
including Osteoglossum from South America and Scleropa-
ges from Southeast Asia and Australia, and Arapaiminae (= 
Heterotidinae) including Heterotis from Africa and Arapai-
ma from South America). In all osteoglossids, the large, cy-
cloid scales are reticulate, with a network of furrows across 
the entire surface of the scales (mormyroids have reticulate 
furrows on just the posterior field of the scale, with well-
developed radii on the anterior field; see Hilton, 2003: fig. 
39). These furrows define so-called squamules, which have 
been recovered in the fossil record (Gayet, Meunier, 1983; 
Taverne et al., 2007). The crown-group osteoglossids have 
elongate, posteriorly positioned dorsal and anal fins (these 
are longer in Osteoglossum than in Scleropages), a short 
caudal peduncle, and a large rounded caudal fin.

Osteoglossinae (Fig. 8) have laterally compressed bo-
dies and large, dorsally directed mouths with elongate lower 
jaws. Two barbels extend from the anterior tip of the lower 
jaws, and in life these are held horizontally in the water co-
lumn. Most remarkably are the large pectoral fins that have 
a long, very robust leading pectoral fin ray. These fin rays 
support the strong pectoral fins that contribute to the abili-
ty of these fishes to float at the surface while hunting prey 
and leap from the water to capture terrestrial invertebrate 
and vertebrate prey items above the water line (Goulding, 
1980; Verba et al., 2018). Adults of the two species of Os-
teoglossum are silver (O. bicirrhosum) or greyish-steel (O. 
ferreirai) colored, the yolk-sac larvae of O. bicirrhosum are 
silver whereas those of O. ferreirai, which is restricted to 
the Rio Negro, are black with a distinct yellow lateral stripe 
on the body. The species of Osteoglossum are largely allo-
patric: O. bicirrhosum is found throughout the Amazon and 
the Branco river basins, and O. ferreirai is found in the Rio 

Negro basin, including the Branco, and the Orinoco River, 
which was likely the result of an introduction (Escobar et 
al., 2013). Using a ~1,000 base-pair fragment of the mito-
chondrial genome, Escobar et al. (2013) calculated a genetic 
distance of 8.9% between the two species. Scleropages com-
prises four species, two from Southeast Asia (S. formosus 
from Vietnam, Cambodia, Thailand, the Malay Peninsula, 
Sumatra, and Borneo, and S. inscriptus from Myanmar) and 
two from Australia (S. jardinii from the coastal river sys-
tems of northern Australia and Papua New Guinea, and S. 
leichardti from the Fitzroy River basin). Roberts (2012) sug-
gested the subgenus name Delsmania Fowler, 1933 could 
usefully be applied to the group containing S. formosus and 
S. inscriptus, with the two Australian species being in the 
subgenus Scleropages. The four species of Scleropages have 
dramatic coloration and, at least in the case of S. inscriptus, 
patterning. Color variants oh S. formosus have been sugges-
ted to be distinct species (Pouyaud et al., 2003), although 
these are not regarded as valid (Kottelat, Widjanarti, 2005; 
Roberts, 2012). A fossil species of Scleropages, †S. sinensis, 
has been recently described from the Early Eocene Xiwanpu 
and Yangxi formations of China (Zhang, Wilson, 2017). Se-
veral additional fossil taxa have been interpreted as being 
close to Osteoglossinae, if not within the subfamily itself, 
including †Opsithrissops, †Brychaetus, †Foreyichthys, 
†Heterosteoglossum (see Taverne, 1998; Bonde, 2008; and 
Forey, Hilton, 2010 for discussion of these and other fossil 
osteoglossid taxa). Although it bears an elongate lower jaw 
similar to that of osteoglossids, †Furichthys, from the Early 
Eocene of Denmark, has been interpreted as stem-group Os-
teoglossi (= Osteoglossiformes + Mormyriformes; Bonde, 
2008).

Arapaiminae comprises two genera of extant fishes (Ara-
paima and Heterotis; Fig. 9) and putatively several fossil 
taxa, including †Joffrichthys from the Paleocene of Canada 
(Li, Wilson, 1996b), †Trissopterus, from the Eocene of Italy, 
and †Sinoglossus from the Eocene of China (although see 
Murray et al., 2018, who found †Joffrichthys to be a poten-
tial stem osteoglossiform). Arapaima, because of the unique 
configuration of its occipital region (Hilton et al., 2007), has 
been identified in the fossil record based on isolated basioc-
ciptal/vertebral elements (Lundberg, Chernoff, 1992; Gayet, 
Meunier, 1998). Arapaima has long been considered to be 
a widespread monotypic genus, with only A. gigas found 
throughout the Amazon basin. Stewart (2013a,b) argued that 
four nominal species and a new species should be recognized 
(A. arapaima, A. agassizi, A. mapae, A. gigas, and A. lep-
tosoma). Stewart (2013a) further suggested that A. agassizi 
had no known specimens and had not been collected for 190 
years, and that A. mapae and A. gigas were only known from 
their holotypes. Several studies have found moderate to low 
population genetic structure across the range of the genus 
at various scales (Araripe et al., 2013; Watson et al., 2013). 
Most range-wide structure appears to be associated with dis-
tance between populations (Hrbek et al., 2005), and low ge-
netic diversity within smaller portions of its range is sugges-
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tive of overfishing (e.g., Araguaia-Tocantins basin; Vitorino 
et al., 2017). Heterotis niloticus is distributed throughout the 
Nilo-Sudanese region of Africa from Ethiopia to Senegal, 
the Chad basin, and Lake Turkana; it has been widely intro-
duced in central and western Africa and is regionally extinct 
in the upper Egyptian Nile (Akinyi et al., 2010). In contrast 
to Arapaima, there is genetic structure of Heterotis, even wi-
thin relatively small portions of their range (e.g., Hurtado 
et al., 2013, found significant genetic differentiation betwe-
en three river basins in Benin). Arapaima and Heterotis are 
broadly regarded as sister taxa, supported by genetics and 
several morphological characters (enlarged first infraorbital 
bone, divided first infrapharyngobranchial, and having the 
angular, articular, and retroarticular all unfused in the adult 
[otherwise seen only in †Phareodus]; Hilton, 2003).

As a taxonomic aside, Taverne (1979) named two sub-

families of Osteoglossidae: †Phareodontinae (including 
†Phareodus, †Brychaetus, †Musperia, and †Phareoides) 
and Osteoglossinae (including Osteoglossum and Scleropa-
ges), with Pantodontidae (only Pantodon) and Arapaimidae 
as separate families, and the latter containing the subfa-
milies Heterotinae (= Heterotis + †Paradercetis) and Ara-
paiminae (= Arapaima). Two family group names for the 
clade including Arapaima and Heterotis have been used in 
the literature, Arapaimini Bonaparte, 1846 and Heterotidae 
Cope, 1871. Although the former has priority, the latter is in 
broad current usage, as Heterotidinae (e.g., Nelson, 1994, 
2006; Li, Wilson, 1996a; Hilton, 2003; Nelson et al., 2016). 
However, the ICZN’s (1999) criteria for reversal of prece-
dence (Article 23.9) are not satisfied, as both family-group 
names have been used since 1899, and indeed Arapaimidae 
is also used in current literature (e.g., Taverne, 1998; Bonde, 

Fig. 8. Osteoglossinae. a. Osteoglossum bicirhossum (UF 189007; 260 mm SL; photo by Z. Randall). b. Scleropages formo-
sus (aquarium specimen; photo by Z. Randall).
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2008; Akinyi et al., 2010). Therefore, the principle of prio-
rity should prevail, and Arapaiminae is the correct name for 
this family-group taxon (van der Laan et al., 2014).

The genus-level diversity among the extant Osteoglossidae 
is dwarfed by the number of fossil genera included in or allied 
closely to the family (Forey, Hilton, 2010). Some of these taxa 
are insertae sedis, but several can be referred to the subfamily 
†Phareodontinae (Fig. 10), which was erected by Taverne 
(1979) to encompass †Phareodus (Eocene, North America, 
Australia, including †Phareoides), †Brychaetus, (Eocene, 
Europe, Africa, south Asia, and possibly North America), and 
†Musperia (Eocene, Sumatra). To this group can be added 
†Cretophareodus, †Taverneichthys, and †Ridewoodichthys 
(e.g., see Kumar et al., 2005; Taverne, 2009a,b; Taverne et 
al., 2009; Forey, Hilton, 2010). Other taxa that are referable 
to the subfamily, or otherwise near its base (e.g., interpreted 
to branch off from the stem of the family, or crownward from 
the phareodontines) include †Brychaetoides, †Phareodusich-
thys, †Monopteros, †Xosteoglossid, †Magnigena, and seve-
ral unnamed taxa (Bonde, 2008; Forey, Hilton, 2010). Two 
Eocene osteoglossomorphs from Africa, †Singida (Fig. 11) 
and †Chauliopareion, are frequently considered to be related 
to Osteoglossidae, primarily either as stem-groups (Murray, 
Wilson, 2005; Xu, Chang, 2009; Murray et al., 2018), or as 
sister-group to Pantodon (Hilton, 2003), although other posi-
tions have been supported (e.g., stem Osteoglossine, Zhang, 
2006; stem Osteoglossi, Bonde, 2008). †Chanopsis (Aptian, 
Democratic Republic of the Congo) has also been considered 
to be an osteoglossid (Bonde, 1996; Taverne, 1998), although 
Forey, Hilton (2010) questioned this assessment.

A remarkable aspect of the fossil record of Osteoglos-

sidae is that several forms are known from undisputedly 
marine deposits (Taverne, 1998; Bonde, 1996, 2008; Forey, 
Hilton, 2010). This is remarkable because all extant osteo-
glossomorphs are entirely freshwater forms, and their distri-
bution has been held as a text-book example of vicariance 
biogeography. However, the occurrence of marine fossil taxa 
suggests that at least portions of the evolutionary history of 
Osteoglossomorpha took place in the marine realm (Taver-
ne, 1998; Bonde, 2008; Forey, Hilton, 2010). Bonde (2008) 
in fact concluded a marine origin of Osteoglossomorpha, 
with two or three freshwater invasions, although as many 
as nine possible invasions into marine habitats was offered 
as an alternative hypothesis [this latter hypothesis was re-
grettably miscited as Bonde’s primary conclusion by Forey, 
Hilton, 2010]). Among the marine forms are †Magnigena 
(Paleocene, Saudi Arabia), †Brychaetus (Eocene, Europe, 
Africa, south Asia, and possibly North America), †Heteros-
teoglossum, †Furichthys, †Xosteoglossid, †Brychaetoides, 
and an unnamed osteoglossiform (Early Eocene, Denmark), 
†Monopteros, †Thrissopterus, and †Foreyichthys (Eocene, 
Monte Bolca, Italy), as well as several unnamed taxa (e.g., a 
particularly osteoglossid-like partial braincase from the Eo-
cene London Clay; Forey, Hilton, 2010).

Pantodontidae. A single species comprising genetically 
differentiated allopatric populations, Pantodon buchholzi, 
the African butterfly fish, is classified in the family Pan-
todontidae (Nelson et al., 2016), although it is frequently 
included within the family Osteoglossidae (e.g., Taverne, 
1979; Li, Wilson, 1996a; Hilton, 2003). This is a relatively 
small fish, with a strongly upturned mouth, flattened head, 

Fig. 9. Arapaiminae. a. Arapaima sp. (VIMS 38993; 120 mm SL). b. Heterotis niloticus (CU 95903); Scale bar = 2 cm.



Systematic biology of Osteoglossomorpha
Neotropical Ichthyology, 16(3): e180031, 2018
12

e180031[12] 

short dorsal and anal fins positioned far back on its body, a 
rounded caudal fin, large wing-like pectoral fins, and pelvic 
fins with an elongate fin rays (Fig. 12). The head and pec-
toral fin has a superficial similarity to that of osteoglossi-
nes. Despite its similarity in some respects (e.g., infraorbital 
bones) to Osteoglossinae, Nelson (1969: 25) observed that 
“the systematic position of Pantodon consequently is obs-
cure.” This remains to be the case (see below). Part of the 
issue with the systematic placement of Pantodon is that it is 
a highly derived taxon, with numerous autapomorphies as 
well as significant character conflict with other osteoglosso-
morphs. For instance, the absence of a symplectic is shared 
with Mormyroidea, whereas the absence of an autopalatine 

is shared with Osteoglossidae (Moritz, Britz, 2005). Howe-
ver, unlike those of osteoglossid conditions, the scales of 
Pantodon lack reticulations (e.g., Hilton, 2003: fig. 39) and 
Pantodon has two gonads (versus one) (Britz, 2004).

The skeletal anatomy of Pantodon has been described 
and illustrated by Taverne (1978), and portions of its ske-
leton was illustrated and described by Hilton (2003) and 
Hilton, Britz (2010). In a study of its development, Moritz, 
Britz (2005) showed that the single dermal bone of the pala-
toquadrate in the adult of Pantodon is an ontogenetic fusion 
of the dermopalatine and ectopterygoid. They further con-
clude that the basipterygoid articulation found in Pantodon 
and Osteoglossidae is structurally homologous to that found 

Fig. 10. †Phareodontinae. a. †Phareodus testis, Eocene, Wyoming, USA. (UMA F11332; scale bar = 2 cm). b. †Brychaetus 
muelleri (BMNH P3898; holotype; scale bar = 5 cm) and c. †Brychaetus muelleri (BMNH 1748; scale bar = 2 cm), Eocene, 
England.
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in non-teleosts and a basal clupeomorph, and therefore is a 
character at a broader level of phylogeny than uniting a sub-
group of osteoglossomorphs (e.g., Greenwood et al., 1966; 
Lauder, Liem, 1983; Arratia, Schultze, 1991).

Systematic Biology of Osteoglossomorpha
Morphological systematics of osteoglossomorph fishes. 

Although there is broad agreement that there are three pri-
mary groups at the base of crown-group Teleostei (i.e., Os-
teoglossomorpha, Elopomorpha and Clupeocephala), their 
interrelationships have been debated. The two primary hypo-
theses based on morphological data are alternatively that Os-
teoglossomorpha or Elopomorpha holds the basal position, 
with the other resolved as sister group to Clupeocephala. The 
hypothesis that Osteoglossomorpha is the sister group of all 
other living Teleostei is supported by elopomorphs and clu-

peocephalans having a reduced number of uroneurals that ex-
tend anteriorly beyond the second ural centrum (two versus 
three or four, as found in Hiodon), and in having epipleural 
bones throughout the abdominal region (Patterson (1977; 
also Patterson, Rosen 1977). In contrast, basal members of 
Elopomorpha retain a broad suite of plesiomorphies (e.g., a 
gular plate, a suprapharyngobranchial bone, mandibular sen-
sory canal that open posteriorly or medially, and the antorbi-
tal bone carry the infraorbital canal) such that the alternate 
state of these characters resolve as synapomorphies for Os-
teoglossomorpha + Clupeocephala (e.g., Arratia, 1991, 1997, 
1999; Li, Wilson, 1996a; Shen, 1996).

Taverne’s (1979) analysis of osteoglossomorph rela-
tionships set the stage for all subsequent studies of the in-
terrelationships of the group. The topology of extant taxa 
reflects that which is recovered in most other studies (with 

Fig. 11. †Singida jacksonoides (BMNH P63333, latex peel of holotype). Scale bar = 2 cm.

Fig. 12. Pantodontidae. Pantodon buchholzi (CU 87447). Scale bar = 2 cm.
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the exception of the position of Pantodon in molecular 
analyses; see below), with Hiodontidae as sister group of 
all other osteoglossomorphs, Notopteridae and Mormyroi-
dea as sister groups, and three lineages within Osteoglos-
sidae (Osteoglossum + Scleropages, Arapaima + Heterotis, 
and Pantodon). Notable in this analysis was the inclusion of 
many fossil taxa, particularly those from Africa and Mon-
te Bolca (Italy), which have been rarely included in more 
recent analyses (e.g., †Chetungichthys, †Kipalaichthys, 
†Paradercetis, †Foreyichthys, †Opsithrissops, †Monop-
teros, and †Musperia). Some of these are represented by 
few, fragmentary or poorly preserved specimens, and their 
systematic affinities have been discussed by other authors. 
Taverne (1998; Fig. 13a) revisited the systematics of Oste-
oglossomorpha following his redescription of several oste-
oglossomorph taxa from Monte Bolca. This new analysis 
defined 333 characters (some of which appear at multiple 
times or as reversals at different levels of phylogeny), and 
expanded the taxon sampling, in part by evaluating indivi-
dual species (e.g., species of †Phareodus). Unsurprisingly, 
the position of many of the fossil taxa moved around compa-
red to his 1979 analysis (which had left several relationships 
ambiguous), including dissolution of †Phareodontinae, the 
members of which spread out along the backbone of the tree 
within Osteoglossiformes. In the context of analyzing the 
systematic affinities of new marine fossil osteoglossomor-
phs from the Eocene of Denmark, Bonde (2008) critically 
examined the phylogeny of Osteoglossomorpha as a whole. 
The discussion, which weighed character data from Taverne 
(1998) and Hilton (2003), with the resulting classification 
(Fig. 13b) largely consistent with the phylogeny proposed 
by Taverne (1998), with differences among some fossil taxa 
(e.g., †Foreyichthys).

In a series of studies on fossil and living osteoglossomor-
phs, Li and colleagues (Li, Wilson, 1996a,b, 1999; Li et al., 
1997a,b; Fig. 14a) made the first attempts to incorporate data 
for osteoglossomorphs into a global, computer-assisted par-
simony analysis, and this data matrix has served as the basis 
for all subsequent study of the group. In particular, these stu-
dies included data for an expanded taxon sampling, which 
included several of the fossil taxa from the Cretaceous of 
China (e.g., †Tongxinichthys, †Yanbiania, †Plesiolycoptera, 
†Paralycoptera, †Kuntulunia, etc.). The basic framework of 
the topology is similar to that presented by Taverne (1979) 
for the extant taxa. Hilton (2003; Fig. 14b) reevaluated the 
characters used in Li’s analyses and discovered errors of 
coding and criticized aspects of their character definition. 
In Hilton’s (2003) results, the major difference was in the 
position of Notopteridae (as sister group of Osteoglossidae 
+ Mormyroidea, instead of sister to Mormyroidea). Althou-
gh Osteoglossidae + Mormyroidea was supported by several 
uniquely derived characters (e.g., extrascapular reduced and 
irregularly shaped, fifteen or fewer branched caudal fin rays, 
and one neural spine on ural centrum 1), several characters 
that support Notopteridae + Mormyroidea could not be fully 
evaluated in that study. Zhang (2006) and Xu, Chang (2009) 

further examined the systematic relationships of Osteoglos-
somorpha, based in part on a new study of several of the 
early osteoglossomorphs from the Early Cretaceous of Chi-
na. Both are consistent with relationships among extant taxa, 
with the exception of the position of Pantodon, which Zhang 
(2006) found to be the sister group of Osteoglossinae (vs. 
sister to Osteoglossidae).

Wilson, Murray (2008) also reviewed the relationships 
within Osteoglossomorpha, accepting some of Hilton’s 
(2003) characters and interpretations, and rejecting others 
to return to Li et al. (1997b; the most recent of data sets, 
despite publication dates). The resulting topology again, 
provided consistent results regarding the relationships of 
extant taxa (including return of the traditional Notopteridae 
+ Mormyroidea clade, contra the results of Hilton, 2003). 
This data matrix has been expanded by coding of newly 
described fossil taxa (e.g., †Chauliopareion, †Wilsonich-
thys, †Shuleichthys, †Lopadichthys), and the most recent 
iteration appears in Murray et al. (2018; Fig. 14). That stu-
dy described a new species of †Joffrichthys (†J. tanyou-
rus), a new genus and species (†Lopadichthys colwellae) 
and reviewed the fossil record of osteoglossomorphs in 
North America. Notable among its results is the exclusion 
of †Joffrichthys from the Osteoglossidae. The authors also 
convincingly justified removal of †Ostariostoma wilseyi, a 
monotypic genus from the Late Cretaceous or Early Pale-
ocene of Montana, from Osteoglossomorpha, where it had 
been assigned since Grande, Cavender’s (1991) redescrip-
tion. †Ostariostoma has long been regarded as a problema-
tic taxon, of unstable relationships, and Murray et al. (2018) 
suggest that it might be allied to Gonorynchiformes, citing 
similarities of the vertebral column of these fishes. A further 
result of this study is the demonstration of just how sensi-
tive the data matrix is to changes in coding, as with both 
changes in taxon sampling (e.g., expansion of outgroups to 
include Amia and taxa from Clupeomorpha, and removal of 
†Ostariostoma) and slight changes to homology assessment 
(e.g., identification of epurals and uroneurals in fossil taxa) 
and the resulting coding changes, produce very different 
phylogenies, including the non-monophyly of Osteoglosso-
morpha. This suggests that many of the nodes are weakly 
supported and/or that many taxa contain substantial suites 
of conflicting characters.

Molecular systematics of osteoglossomorph fishes. 
The molecular systematics of osteoglossomorph fishes have 
focused primarily on three main questions relative to its mo-
nophyly, its phylogenetic position within Teleostei, and the 
inter-familial relationships within the order Osteoglossifor-
mes (i.e., Osteoglossomorpha excluding the order Hiodonti-
formes). In addition to these higher-taxonomic level studies, 
several molecular studies have inferred the phylogeny of 
each osteoglossomorph family, often to examine either the 
evolution of some of their most remarkable traits or their 
geographical distribution or their evolutionary processes. 
The molecular systematics of Osteoglossomorpha is slowly 
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entering in a new area, the “genomic area”, thanks to the 
development of molecular biology technology making it 
possible to sequence complete genomes at a reasonable cost 
and the progresses in computer sciences making possible to 
compare such large genomic data. In this section, we review 
these aspects of the systematics of Osteoglossomorpha.

Monophyly of Osteoglossomorpha. The monophyly of 
living Osteoglossomorpha is strongly supported by several 
morphological synapomorphies (see above), and this hypo-
thesis therefore represented a good test to evaluate the value 
of molecules in systematics of Osteoglossomorpha. Only few 
molecular studies comprehensively tested the monophyly 

Fig. 13. Morphological systematics of Osteoglossomorpha. Phylogenies redrawn from a. Taverne (1998) and b. inferred 
phylogeny based on classification presented by Bonde (2008).
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Fig. 14. Morphological systematics of Osteoglossomorpha. Phylogenies redrawn from a. Li, Wilson (1996a), b. Hilton 
(2003), c. Zhang (2006), and d. Murray et al. (2018).
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of Osteoglossomorpha by including at least one species of 
Hiodon and one species of Osteoglossiformes, along with at 
least one representative of Elopomorpha, one representative 
of Clupeocephala and one non-teleost ray-finned fish (such 
as Amia calva) to root the tree. All these studies recovered 
a monophyletic Osteoglossomorpha with strong statistical 
support, using either complete mitogenomes (e.g., Inoue et 
al., 2003; Lavoué et al., 2012) or large selections of nuclear 
genes (Near et al., 2012; Betancur-R et al., 2013).

Phylogenetic position of Osteoglossomorpha. Since 
the first (i.e., early 1990s) nucleotide sequence-based studies 
aiming to investigate the relationships among main teleost 
lineages, Osteoglossomorpha, Elopomorpha (eels and rela-
tives), Clupeomorpha (sardines, anchovies and relatives), 
Ostariophysi (milkfish, carps, catfishes, and relatives) and 
Euteleostei (salmons, pikes, spiny-fishes and relatives) (i.e., 
Normark et al., 1991; Le et al., 1993), several molecular 
studies have addressed the question of the phylogenetic po-
sition of Osteoglossomorpha relative to other teleosts using 
larger molecular datasets and denser taxonomic samplings. 
The topologies of the phylogenetic trees of Normark et al. 
(1991) and Le et al. (1993) were different from each other 
and also contained some unconventional groupings that 
were likely the consequence of sparse taxon samplings and 
short molecular sequences used in these two exploratory 
molecular studies. However, despite these limitations, both 
studies confirmed the Osteoglossomorpha as one of the pri-
mary basal teleostean lineages.

Most subsequent molecular studies identified three main 
monophyletic teleostean groups, as do morphological stu-
dies: Elopomorpha, Osteoglossomorpha, and Clupeocepha-
la (comprising Clupeomorpha, Ostariophysi and Euteleos-
tei) (Fig. 15a). However, molecular data provide unclear 
results regarding to the phylogenetic position of Osteoglos-
somorpha relative to the two other lineages (Elopomorpha 
and Clupeocephala) because of the unresolved position of 
the root (Fig. 15a). There is a tendency in recent molecular 
studies using large taxonomic samplings and sets of several 
genes to identify Elopomorpha as the sister group of the rest 
of Teleostei with the consequence that Osteoglossomorpha 
and Clupeocephala form a monophyletic group (Near et al., 
2012; Betancur-R et al., 2013; Chen et al., 2014). This phy-
logenetic arrangement is at best moderately supported by 
statistics (such as Bootstrap values) and often alternative ar-
rangements cannot be rejected statistically. Other molecular 
studies present different hypotheses such as the sister rela-
tionship between Osteoglossomorpha and Elopomorpha (Le 
et al., 1993) or the sister relationship between Elopomorpha 
and Clupeocephala (Inoue et al., 2003; Johnson et al., 2012) 
(Fig. 15a) or a polytomy among the three groups (Li et al., 
2008).

Four recent genomic studies, each based on several 
thousand molecular characters (sampled across the whole 
genome) but few taxa found conflicting results: Chen et al. 
(2014) and Bian et al. (2016) supported the hypothesis of a 

sister group relationship between Elopomorpha and Osteo-
glossomorpha, whereas Austin et al. (2015) recovered Oste-
oglossomorpha as the sister group of all other Teleostei and 
Faircloth et al. (2013) recovered Elopomorpha in this posi-
tion (Fig. 15a). Shen et al. (2017) examined the distribution 
of the phylogenetic signal in the dataset of Chen et al. (2014) 
and found that only a small subset of genes provides support 
for Elopomorpha + Osteoglossomorpha over Elopomorpha 
+ Clupeocephala; Shen et al. (2017) did not evaluate the 
third hypothesis (i.e., Elopomorpha is the sister group of the 
rest of Teleostei). Therefore, molecular data, so far, has not 
provided unambiguous phylogenetic signal to resolve the 
question of the phylogenetic position of Osteoglossomorpha 
within Teleostei. We note that the two most recent studies 
that examined this question (i.e., Hughes et al., 2018; Vialle 
et al., 2018) also provided contrasting results.

Molecular phylogeny of Osteoglossomorpha. The 
higher-level (i.e., inter-familial level) relationships of Os-
teoglossomorpha have been addressed in a few molecular 
studies. Among these studies, those based on a single gene 
(such as cytochrome b or 18S rDNA) have been shown to 
produce unreliable phylogenetic results (relative to the phy-
logeny of Osteoglossomorpha) because of weak resolution, 
weak support, and variable or unexpected tree topologies 
(e.g., Kumazawa, Nishida, 2000; Santini et al., 2009; Mu et 
al., 2012, 2013). This is likely the consequence of the limi-
ted and low quality (i.e., high-level of homoplasy content) of 
phylogenetic signal when using such single gene. Contrary 
to the single-gene approach, the multi-gene phylogenetic 
studies tend to produce highly similar (often identical) topo-
logical hypotheses (see below).

At higher-levels, Lavoué, Sullivan (2004) was the first 
molecular phylogenetic study of Osteoglossomorpha in whi-
ch Hiodon (Hiodontiformes) and at least one representati-
ve of each osteoglossiform family were examined together. 
Their most-parsimonious phylogenetic tree of Osteoglosso-
morpha based on the analysis of five genes (Fig. 15b) shows 
Hiodontiformes (Hiodon alosoides) to be the sister group 
of Osteoglossiformes. Within the Osteoglossiformes, Panto-
don buchholzi is the sister group of the rest of the taxa and 
Osteoglossidae (minus P. buchholzi) is the sister group of 
Notopteroidei (= Notopteridae (Gymnarchidae + Mormyri-
dae)). Within Osteoglossidae, two lineages were identified, 
one including Arapaima gigas and Heterotis niloticus and 
another comprising Scleropages sp. and Osteoglossum bi-
cirrhosum. The main difference between this molecular tree 
and previous morphological hypotheses is the position of 
Pantodon. While the overall topology of this tree (Fig. 15b) 
is well supported, the branch supporting Pantodon is signi-
ficantly longer than the other branches, which could indicate 
a difficulty for reliably inferring the placement of Pantodon 
(i.e., potentially a case of long branch attraction; Bergsten, 
2005). Several subsequent studies that addressed the phy-
logenetic position of Pantodon within Osteoglossomorpha 
using different characters and taxonomic sampling found si-
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Fig. 15. Molecular systematics of Osteoglossomorpha. a. The phylogenetic positions of Osteoglossomorpha relative to Elo-
pomorpha and Clupeocephala as inferred from molecules. Each arrow-head indicates a root position on the same unrooted 
topology providing three different hypotheses (1 to 3). For each rooted topology, three references are given. b. A molecular 
phylogenetic tree of Osteoglossomorpha (modified from Lavoué, Sullivan, 2004). This is the single most-parsimonious tree 
recovered from a dataset of five molecular markers (12S and 16S rRNA, cytochrome b, RAG2, and MLL). Bootstrap propor-
tions (>50%) and Bremer support indices (in parentheses) are indicated at nodes. Synapomorphic molecular insertions from 
12S rRNA are shown by inverted triangles.
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milar results as Lavoué, Sullivan (2004). In particular, Inoue 
et al. (2009), Lavoué et al. (2011) and Lavoué et al. (2012) 
examined the phylogeny of Osteoglossomorpha using com-
plete mitogenomic sequences but different taxonomic sam-
plings; all inferred the same tree topology.

Near et al. (2012) reconstructed the phylogeny of more 
than 230 ray-finned fish species (including nine osteoglosso-
morph species but, noticeably, not Pantodon) using a nine-
-nuclear-gene dataset also found the same topology as pre-
vious analyses. Betancur-R et al. (2013) examined a larger 
dataset (more than 1400 teleost species and 20 nuclear genes 
along with one mitochondrial gene, 16S sRNA). Both stu-
dies found similar results to Lavoué, Sullivan (2004) except 
for the position of Pantodon in Betancur-R et al. (2013), 
which was recovered as the sister group to the rest of oste-
oglossids examined (i.e., Arapaima gigas, Heterotis niloti-
cus and Osteoglossum bicirrhosum). However, the dataset 
of Osteoglossomorpha of Betancur-R et al. (2013) contains 
more than 50% missing data and a recent re-analysis of this 
dataset placed Pantodon as the sister group of the rest of 
Osteoglossiformes (Betancur-R et al., 2017). Lavoué (2016) 
combined the morphological dataset of Hilton (2003), as 
modified by Wilson, Murray (2008), with the mitogenomic 
dataset of Lavoué et al. (2012) and the nuclear gene data-
sets of Near et al. (2012) and Betancur-R et al. (2013) to re-
construct the phylogeny of Osteoglossomorpha. Analytical 
results provided a tree topology identical to that of Lavoué, 
Sullivan (2004) in which Pantodon is the sister group of the 
rest of Osteoglossiformes. Bian et al. (2016) is the first geno-
mic study in which the phylogenetic position of Pantodon, 
relative to Notopteroidei (only Papyrocranus afer sampled) 
and Osteoglossidae (only Scleropages formosus sampled) 
could be investigated. The authors found Pantodon sister 
group of S. formosus, keeping open the question of the po-
sition of Pantodon in molecular systematics. Finally, in the 
most recent genomic study to date, Hughes et al. (2018) fou-
nd Pantodon sister group of the rest of Osteoglossiformes 
(Hiodontiformes was not sampled).

Molecular systematics at or below the family level. At 
lower-level (i.e., intra-familial levels), molecular phyloge-
netic analyses of several osteoglossiform families have been 
conducted to produce frameworks to explore the evolution 
of some remarkable traits in these fishes. For example, based 
on topologies generated by novel molecular data, Sullivan 
et al. (2000) studied the evolution of the cell-anatomy of 
the electric organs of African weakly electric fishes (Mor-
myridae and Gymnarchidae), based on a new phylogenetic 
hypothesis, Carlson et al. (2011) studied the evolution of 
their brain, and Lavoué et al. (2012) studied the origins and 
timing of the electric sense in Osteoglossomorpha and Te-
leostei.

Molecular-based phylogenies have also served as the 
basis for biogeographical analyses, radiation, and con-
servation. Inoue et al. (2009) examined the phylogeny of 
Notopteridae to test biogeographical hypotheses relative to 

their distribution. Lavoué (2015) specifically tested some 
biogeographical hypotheses relative to the distribution of 
the trans-Wallace’s Line distributed genus Scleropages in 
reconstructing the phylogeny of this genus within the Os-
teoglossidae. Feulner et al. (2007), Sullivan et al. (2004) 
and Arnegard et al. (2010) examined the speciation process 
within genera of African weakly electric fishes. Finally, the 
genetic population structure of osteoglossomorph species 
listed in the “IUCN Red List of Threatened Species” was 
recently reported for conservation purpose, including Ara-
paima gigas (Hrbek et al., 2005; Araripe et al., 2013) and 
Scleropages formosus (Yue et al., 2000, 2003, 2006; Mohd-
-Shamsudin et al., 2011).

Biogeography of Osteoglossomorpha. Osteoglosso-
morpha has attracted much attention from biogeographers 
studying trans-oceanic distributions of non-marine taxa 
(Cracraft, 1974; Darlington, 1957; Nelson, 1969) because 
they are charismatic, easy to identify, their systematics was 
studied in early cladistic frameworks, and they are distribu-
ted on all continents except Antarctica, thereby exhibiting 
several inter-continental allopatric taxa pairs (i.e., Neotropi-
cal Arapaima/Afrotropical Heterotis; Oriental Scleropages/
Australian Scleropages; Oriental Notopterinae/Afrotropical 
Xenomystinae; Nearctic Hiodontiformes/Gondwanan Oste-
oglossiformes, etc.). Further, they have a rich fossil record 
(including several marine forms) dating back to the Late Ju-
rassic or Early Cretaceous (†Paralycoptera, Tse et al., 2015) 
and, therefore, they are considered to be one of the oldest 
living freshwater teleost lineages. The distribution of Os-
teoglossomorpha was either discussed as a whole (Nelson, 
1969; Taverne, 1979; Li, 1997; Wilson, Murray, 2008) or in 
part: e.g., Arapaima/Heterotis (Lundberg, Chernoff, 1992), 
Notopteridae (Inoue et al., 2009), Osteoglossidae (Bonde, 
1996; Forey, Hilton, 2010), Oriental Scleropages/Australian 
Scleropages (Darlington, 1957; de Beaufort, 1964; Lavoué, 
2015). Sometimes, the distribution of Osteoglossomorpha 
was part of a more general discussion on the biogeographi-
cal relationships of continental regions, such as Neotropics 
versus Afrotropics (Cracraft, 1974; Lundberg, 1993), Ne-
otropics versus Australia (Cracraft, 1974) or the Gondwa-
nan breakup (Cavin, 2008; Lavoué, 2016; Nelson, Ladiges, 
2001; Patterson, 1975).

The work of Nelson (1969) marked a radical methodolo-
gical change in the study on the biogeography of Osteoglos-
somorpha because this author was the first to use a synapo-
morphy-based phylogeny to reconstruct the ancestral regions 
at nodes within the context of plate tectonics (Fig. 16). Nel-
son, however, limited his analysis to extant taxa with little 
consideration for the information that osteoglossomorph fos-
sils can bring (such as minimum age or past range extension 
or past ecological associations). Patterson (1975) based his 
analysis on a modified version of Nelson’s (1969) tree, in 
which mormyrids are transferred as the sister group of no-
topterids (Greenwood, 1971; Fig. 16). Importantly, he added 
two fossils in the tree: †Lycoptera as the sister group of Hio-
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dontidae and †Brychaetus as the sister of Osteoglossidae plus 
Pantodontidae. Doing this, Patterson (1975) provided a strict 
minimum age for the base of the Osteoglossomorpha tree 
corresponding to the age of the oldest fossil, †Lycoptera. He 
also discussed the evidence of possible marine dispersal in 
the Osteoglossidae-Pantodontidae lineage because †Brycha-
etus is a marine taxon. Taverne (1979) published a fully dated 
phylogeny of Osteoglossomorpha in including many fossils. 
Taverne (1979) used this tree to discuss the biogeography of 
these fishes but without explicitly reconstructing ancestral 
areas at nodes. Li (1997) briefly reviewed the knowledge on 
the biogeography of Osteoglossomorpha at that time and he 
provided his own hypothesis based on his phylogenetic re-
sults (Li, Wilson, 1996a). Wilson, Murray (2008) reviewed 
more extensively the fossil record and biogeography of Oste-
oglossomorpha and Forey, Hilton (2010) provided the most 
complete critical account, to date, on the significance of the 
many fossils that have been related to Osteoglossidae and 
their value to study the biogeography of Osteoglossidae.

Below, we review recent hypotheses of the historical bio-
geography of Osteoglossomorpha, specifically addressing 
splits between Arapaima and Heterotis, Osteoglossum and 
Scleropages, and within Notopteridae. We emphasize the im-
portance of timing (to test vicariance hypothesis) and habitat 
constrains (relative to temperature and salinity) in the biogeo-
graphy of trans-oceanic pair taxa that are regularly discussed.

Biogeography of Arapaima and Heterotis. Neotropical 
freshwater fishes has attracted attention of biogeographers 
because, in particular, of the similarity of this fauna and that 
of the Afrotropics, which was noticed more than 100 years 
ago (Eigenmann, 1912; Regan, 1922), well before the theory 
of continental drift of Wegener (1915) radically transformed 
the field of biogeography (Gosline, 1975; Hallam, 1967; Pat-
terson, 1975). In this context, the trans-Atlantic distribution 
of (Arapaima, Heterotis) has been discussed (Cavin et al., 
2008; Cracraft, 1974; Lundberg, 1993; Lundberg, Chernoff, 
1992); yet there is no consensus to explain their distribution 
because of the uncertain phylogenetic position of some “stem 
or crown arapaimin” fossils (Forey, Hilton, 2010; Lundberg, 
Chernoff, 1992) and the age of the divergence between Ara-
paima and Heterotis. Three hypotheses are commonly pro-
posed to explain the Neotropical-Afrotropical distribution 
of Arapaima and Heterotis: 1) the previcariance hypothesis, 
which postulates that the divergence between Arapaima and 
Heterotis predated the fragmentation of South America and 
Africa (Lundberg, Chernoff, 1992; Fig. 16); 2) the tectonic-
mediated vicariance hypothesis, which postulates that the 
divergence Arapaima and Heterotis was the consequence of 
the separation of Africa and South America (Nelson, 1969; 
Fig. 16); and the post-fragmentation dispersal (marine or ge-
odispersal) hypothesis, which postulates that the divergence 
between Arapaima and Heterotis postdated the final frag-
mentation between Africa and South America (Bonde, 1996, 
2008). In theory and under some circumstances (such as ra-
tes of regional extinction), each of these three hypotheses 

can generate a sister group relationship between Arapaima 
and Heterotis. However, timing is critical as it provides a 
strong test of the vicariance hypothesis: the vicariance hypo-
thesis is not rejected if the time divergence between Arapai-
ma and Heterotis overlapped the time of the final separation 
of Africa and South America (about 105 Ma).

Nelson (1969; Fig. 16) and Nelson, Ladiges (2001) 
hypothesized that the ancestral region of the clade (Ara-
paima, Heterotis) was “Africa plus South America”; these 
authors did not include any timescale although Nelson, La-
diges (2001) mentioned the molecular work of Kumazawa, 
Nishida (2000) in which a timescale is provided. Lundberg, 
Chernoff (1992) hypothesized that the divergence between 
Arapaima and Heterotis predated the fragmentation of South 
America and Africa because they considered the Neotropi-
cal fossil †Laeliichthys (Aptian, about 110 Ma) more closely 
related to Heterotis (plus †Paradercetis) than to Arapaima 
(Taverne, 1979; Fig. 16). Therefore, the divergence betwe-
en Arapaima and the Heterotis lineage must have predated 
the separation of Africa and South America. However, the 
phylogenetic placement of †Laeliichthys (and †Paraderce-
tis) was criticized by several researchers (see Bonde, 1996; 
Forey, Hilton, 2010). In particular, Bonde (1996) produced 
a dated phylogenetic tree in which the divergence between 
Arapaima and Heterotis is Eocene, therefore de facto rejec-
ting the vicariance hypothesis and favoring a post-fragmen-
tation (likely marine; see indirect evidence in Bonde, 2008) 
dispersal hypothesis. Recent molecular works favored the 
post-fragmentation divergence in estimating the time of di-
vergence between Heterotis and Arapaima, which is strictly 
younger (105 Ma) than the breakup of South America and 
Africa (Lavoué, 2016),

Beside †Laeliichthys and †Paradercetis, the paleonto-
logical evidence to date the divergence of Arapaima and 
Heterotis is scarce. Otero, Gayet (2001) assigned very frag-
mentary fossils from the Oligocene or Miocene (about 31-23 
Ma) to Heterotis that make them the earliest record of this 
lineage. Some Paleocene remains of Arapaima-like speci-
mens represent the earliest record of the lineage Arapaima in 
South America (Forey, Hilton, 2010; Gayet, Meunier, 1983; 
Lundberg, Chernoff, 1992); fossils of Arapaima and Hetero-
tis have never been found outside their current continental 
regions. A strict interpretation of the fossil record, therefore 
provide a strict minimum age of about 56 Ma for the diver-
gence between Heterotis and Arapaima. The Eocene †Sino-
glossus lushanensis (Su, 1986) is closely related to this cla-
de, either as its sister group (Forey, Hilton, 2010; Li, Wilson, 
1996b) or in an unresolved position relative to Heterotis and 
Arapaima (Li, Wilson, 1996a; Lavoué, 2016; Wilson, Mur-
ray, 2008). The uncertainty in the phylogenetic position of 
†Sinoglossus from China adds difficulties to resolve the bio-
geography of Arapaima and Heterotis but it does not modify 
the current evidence that the divergence postdated the sepa-
ration between Africa and South America. Other Paleocene 
and Eocene fossils may represent stem representatives of the 
clade (Arapaima, Heterotis) such as †Joffrichthys (Nearctics, 
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Paleocene, freshwater; Li, Wilson, 1996b, though see Murray 
et al., 2018) and †Trissopterus (West Palearctic, Eocene, ma-
rine; Bonde, 2008; Taverne, 1998).

Evidence related to timing is growing to support trans-
Atlantic dispersal during the Cenozoic not just for Arapaima 
and Heterotis but also for several trans-Atlantic groups of 

Fig. 16. Phylogeny-based biogeographic hypotheses. Nelson (1969), Patterson (1975), Lundberg, Chernoff (1992).
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fishes (including Cichlidae, Polycentridae, and Siluroidei), 
well after the separation of Africa and South America (Lun-
dberg et al., 2007; Near et al., 2012; Friedman et al., 2013; 
Lavoué, 2016; Matschiner et al., 2017). However, the me-
chanism(s) of these dispersal events is still not known. Often, 
direct marine dispersals were proposed as ad hoc hypothe-
ses to explain these post-drifting faunistic exchanges (Bri-
ggs, 2003; Matschiner et al., 2017). However, in the case 
of Arapaima and Heterotis, there is no convincing evidence 
that the most recent common ancestors were marine adapted 
(Lavoué, 2016; Sparks, Smith, 2005; but see Bonde, 2008; 
Taverne, 1998). Moreover, although in theory it is possible, 
the marine dispersal hypothesis explaining the distribution 
of Arapaima and Heterotis seems highly unlikely because 
it necessitates the combination of four rare evolutionary 
events (Fig. 17): one “freshwater-to-marine” transition, one 
long-distance marine dispersal, one “marine-to-freshwater” 
transition and, finally, the selective extinction of marine or-
ganisms on each side of the marine environment. Recent 
habitat preference reconstructions using phylogenetic trees 
show that environmental transitions are rare events in Tele-
ostei (Bloom, Lovejoy, 2012; Davis et al., 2012; Lavoué et 
al., 2012; Conway et al., 2017).

While direct trans-oceanic dispersals seem unlikely, 
other dispersal processes must be hypothesized to account 
for such trans-Atlantic faunistic exchanges during the Ceno-
zoic. The geodispersal hypothesis between Africa and South 
America (or vice versa) through the Holarctic route “Nor-
th America (= Nearctics) -Greenland region-West Europe 
(West Palearctics)” represents an alternative to the direct 
marine dispersal to explain the inter-continental exchan-
ges of freshwater fishes from the end of the Cretaceous to 
the Eocene (Fig. 17). At first glance, geodispersal through 
Northern hemisphere may also seem unlikely for tropical 
freshwater fish because 1) the current climatic conditions 
in the northern hemisphere (above 30 degree latitude) are, 
at the best, temperate during summer and often cold during 
winter; this is unsuitable for warm-adapted organisms such 
as tropical fishes and 2) three trans-continental land bridges, 
supporting continuous freshwater systems, must have exis-
ted synchronously or repetitively between South-America 
and North America, North America and Europe and Europe 
and Africa during the Late Cretaceous-early Cenozoic in-
terval.

Biogeography of Osteoglossum and Scleropages. The 
distribution of the lineage including Osteoglossum and 
Scleropages is unique among recent fishes in spanning the 
following three continental regions: Neotropics (two species 
of Osteoglossum), Australia (two species of Scleropages) 
and Orient (two species of Scleropages). Because of that, 
the region where the most recent common ancestor of this li-
neage lived is still mostly unknown. The fossil record docu-
ments the presence of Scleropages in Orient and in Australia 
in the early Eocene and Oligocene, respectively (Hills, 1934, 
1943; Zhang, Wilson, 2017). Very incomplete fossils from 

India (Maastrichtian), Europe (Palaeocene), Sumatra (Eoce-
ne) and Africa (Palaeocene) have also been assigned to Scle-
ropages (Kumar et al., 2005; Taverne et al., 2007; Nolf et 
al., 2008; Sanders, 1934; Taverne, 2009c). These fossils are 
all freshwater forms. Bonde (2008) described several marine 
fossils as stem to the clade Scleropages + Osteoglossum, but 
none as crown. There is no fossil of Osteoglossum. The ex-
tant species of Scleropages form a putatively monophyletic 
group hat is the sister group of Osteoglossum.

Some studies postulated that “South America + Australia 
+ East Antarctica” was the region where lived the ancestor 
of the clade Osteoglossum + Scleropages during the Eocene/
Oligocene followed by one vicariant event between South 
America and “Australia plus East Antarctica” (and extinc-
tion in East Antarctica), then followed by a marine dispersal 
event between Australia and Orient (which explains the pre-
sence of extant Scleropages in Orient) (Cracraft, 1974; Nel-
son, 1969). The recent discovery of the Eocene †S. sinensis 
in the Orient refutes in part this scenario because it forced 
the divergence between Scleropages and Osteoglossum to 
predate the final separation of South America and “East 
Antarctica-Australia”. Lavoué (2016) dated the divergence 
between Scleropages and Osteoglossum broadly between 
80-45 Ma but without considering †S. sinensis, which was 
described later (Zhang, Wilson, 2017).

Given the current evidence, the most likely hypothesis to 
explain the trans-marine distribution of Scleropages is a ma-
rine dispersal between Australia and Orient across Wallace’s 
Line; the ancestral region where the most recent common 
ancestors of Osteoglossum and Scleropages lived is unre-
solved.

Biogeography of Notopteridae. It is only recently that 
the biogeography of Notopteridae has been investigated. 
Phylogenetic and paleontological evidence strongly support 
the hypothesis that the monophyletic Asian Notopterinae 
originated from Afrotropics. The oldest notopteroid fossil 
known is †Palaeonotopterus greenwoodi from the Cenoma-
nian of Morocco (Forey, 1997). This fossil provides a strict 
minimum age of 94 Ma for the presence of the Notopteroidei 
in Africa. Notopterid otoliths (“genus Notopteridarum” Nolf 
et al., 2008) from the Deccan Intertrappean Beds (India), 
dated to the Late Cretaceous (66 Ma), mark the earliest pre-
sence of Notopteridae in Asia. However, these otoliths do 
not share the modification present in recent species, leading 
Nolf et al. (2008) to suggest that they should belong to some 
stem notopterid species. Another Asian fossil Notopteridae 
was described from the Eocene of Sumatra (56.0-33.9 Ma) 
(Sanders, 1934). This fossil is very similar to the living No-
topterus and it provides a strict minimum age for the presen-
ce of the crown group Notopterinae in Asia.

Two biogeographical hypotheses have been proposed 
to explain the distribution of the Asian Notopteridae: 1) 
the tectonic mediated vicariance hypothesis caused by the 
separation of Africa and India (the “Indian ferry” hypothe-
sis) (Inoue et al., 2009), and 2) the Miocene geodispersal 
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Fig. 17. Evolutionary events supporting the marine and geodispersal dispersal hypotheses to explain the distributions of Ara-
paima and Heterotis. Each dispersal hypothesis requires four main evolutionary events (that are mapped on time calibrated 
phylogenetic trees and a 60 Ma paleomap reconstruction). Paleomap modified from Seton et al. (2012). Timescale in million 
years ago (Ma). For each hypothesis, possible ancestral areas at nodes shown on phylogenies (Abbreviations: Afr, Africa 
(Afrotropics); Sam, South America (Neotropics); NA, North America (Nearctics); Eur, West Eurasia (West Palearctics); EA, 
East Atlantic; WA, West Atlantic. “X” means extinction). Grey rectangles indicated time limit for each hypothesis.
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hypothesis, which is linked to the collision between Africa 
and Eurasia (Bănărescu, 1991). Inoue et al. (2009) estima-
ted the divergence between Notopterinae and Xenomystinae 
broadly between 160 Ma and 110 Ma. These authors did not 
reject the vicariance hypothesis but the age of the Teleostei 
was overestimated to 300 Ma. Within the hypothesis that 
Teleostei is about 200 Ma, Lavoué (2016) re-estimated the 
time divergence between Notopterinae and Xenomystinae to 
83.2 Ma (95% CI: 105-60 Ma) with the conclusion that the 
tectonic mediated vicariance hypothesis should be rejected. 
In the same study, the age of the crown group Xenomys-
tinae was roughly estimated to 50 Ma. In agreement with 
this molecular dating (Lavoué, 2016), the presence of the 
Notopterus-like fossil in Sumatra (Sanders, 1934) rejects the 
second hypothesis.

Therefore, a third dispersal hypothesis (marine?) 
should be considered in which the dispersal event would 
have occurred between a maximum of 100 Ma and a mi-
nimum of 50 Ma (maybe 66 Ma if the fossil otoliths fou-
nd in India are related to Notopterinae). Lavoué, Sullivan 
(2004) noted that Asian notopterids loose the electrorecep-
tion sense, and they speculated this could be the result of 
a marine dispersal event between Africa and Asia. Future 
investigations should consider the following two points: 1) 
this spatio-temporal pattern is similar to the distribution 
of other groups of freshwater fish (e.g., cichlids, cyprino-
dontiforms, and possibly †Sinoglossus and Heterotis); 2) 
The Indian subcontinent during the Late Cretaceous-Early 
Cenozoic does not look biogeographically isolated from 
Africa (reviewed in Verma et al., 2016 and Vérard et al., 
2017, including freshwater fishes, Nolf et al., 2008), as 
the current paleogeological reconstructions would sug-
gest (Ali, Aitchison, 2008; Chatterjee et al., 2013; Gaina 
et al., 2015). Recent studies, such as Torsvik et al. (2013), 
improve the paleogeological reconstruction of the Indian 
Ocean region during the Cretaceous-Early Cenozoic and 
show that this region was more complex than previously 
thought. Further study is needed to better understand the 
biogeography of this region.

Future research needs
Reassessment of the morphology and systematics of 

fossil and living osteoglossomorphs. The morphology of 
osteoglossomorph fishes has been intensively studied for 
a long time. Many of the preeminent ichthyologists of the 
19th century (e.g., Cuvier, Agassiz, Cope, and others) of-
fered much of the early taxonomic descriptions and a lot 
of anatomical characters and broad comparisons, many of 
which persist now. These studies culminated in Ridewood’s 
(1904, 1905) papers on the skull of osteoglossomorphs and 
other basal teleosteans fishes (his underlying approach fo-
reshadowing cladistic phylogenetic analysis; Hilton, Forey, 
2005). Throughout much of the 20th century, the morpholo-
gy of individual taxa were explored in varying levels of de-
tail, but it was not until Taverne’s monographic treatments 
of osteological data that Osteoglossomorpha was treated in 

a comprehensive, systematic manner. Since these studies 
there have been many studies focused on individual aspects 
of osteoglossomorph anatomy and descriptions of many 
new fossil taxa. Given the abundant newly described taxa, 
new data matricies, and new definitions and discussions of 
morphological characters related to Osteoglossomorpha 
that have been published recently (e.g., Hilton, 2003; Mur-
ray, Wilson, 2005; Zhang, 2006; Leal, Brito, 2007; Wilson, 
Murray, 2008; Bonde, 2008; Xu, Chang, 2009; Taverne, 
2009a,b,c; Taverne et al., 2009; Hilton, Britz, 2010; Forey, 
Hilton, 2010; Murray et al., 2010, 2016, 2018), the time 
seems good for a complete reassessment of characters and 
new study of relationships among all taxa. Further, many 
of the recently described fossil taxa need to be reexamined 
and incorporated into an expanded comparative data set. 
Given the technological advances that have been develo-
ped for the study of anatomy, including the comparative 
study of soft tissues and ontogeny (Hilton et al., 2015), 
which are virtually unstudied for osteoglossomorphs, there 
remain, even in this well studied group, many unknown 
aspects of their comparative anatomy that will undoubte-
dly prove useful for understanding their phylogenetic re-
lationships.

Morphology of Mormyridae and intrafamilial rela-
tionships. In an extensive series of papers, Taverne (1967, 
1968a, b, 1969, 1970, 1971, 1972) established a taxono-
mically robust source of osteological data for mormyroid 
fishes. Since that time, significant variation within the 
family continues to be documented (e.g., in the caudal 
skeleton and its development; Hilton, Britz, 2010). Wi-
thin Mormyridae, the hypotheses of relationships among 
genera that were proposed by Taverne (1972) have been 
largely untested by morphological data (e.g., through col-
lection of new data, by different approaches for character 
conceptualization, etc.), and the time seems ripe to revisit 
the relationships among mormyrid genera based on new 
morphological observations. Further, several genera have 
been recovered as non-monophyletic by genetic analyses 
(e.g., Sullivan et al., 2000), and these now must be recon-
sidered and redefined.

Embryology and early ontogeny of Hiodon As pu-
tatively the basal most extant osteoglossomorph genus, 
Hiodon is considered to be of great systematic importance, 
and is often used as a representative osteoglossomorph in 
broad phylogenetic analyses (e.g., Arratia, 2001; Hurley et 
al., 2007). Hiodontids have semi-buoyant eggs, and this is 
among the earliest occurrence of such an egg type found 
in Teleostei. Among the smallest larval specimens of H. 
tergisus described in the literature is a 7.1 mm specimen 
(Snyder, Douglas, 1978). Battle, Sprules (1960) described 
the embryology and larval development of H. alosoides, 
based on specimens prehatching stages, as well as 7.27 mm 
larvae. Both studies focus on external features and larval 
identification (see also Wallus, 1986). Two morphological 
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studies have focused on the osteology of this taxon (Ta-
verne, 1977; Hilton, 2002), yet there is still a poor unders-
tanding of the early developmental stages of Hiodon. For 
example, the smallest stages available to Hilton (2002) for 
his osteological study was 21 mm SL, and the smallest 
specimens used by Schultze, Arratia (1988) in their study 
of the development of its caudal skeleton was 22 mm SL. 
By these stages, many of the skeletal elements are already 
present, particularly in the cranial skeleton, and therefore 
there is no data, for instance, on the relative timing of skull 
bones. Ontogenetic data can be important for homology as-
sessment, for example, and as character data in systematic 
studies (Leis et al., 1997; Hilton et al., 2015).

Species limits among classically monotypic taxa. With 
the suggestion that there is more than a single extant species 
of Arapaima (Stewart 2013a,b), the question arises whether 
there remains cryptic species within other traditionally held 
monotypic genera. Certainly, population-level structure for 
wide-ranging, monotypic osteoglossomorph taxa can be in-
formative (e.g., for biodiversity and conservation purposes), 
whether or not variation (morphological or genetic) is deter-
mined to be at the level of distinct species. Other monotypic 
taxa for that are good candidates for reconsideration are 
Scleropages formosus, Heterotis niloticus, Xenomystus ni-
gri, Notopterus notopterus, and Gymnarchus niloticus (e.g., 
Roberts, 1992). Pantodon buchholzi would appear also to 
be a good candidate for testing its monotypic status, being 
distributed with two widely disjunct populations in the Ni-
ger and Congo basins. Lavoué et al. (2011) found very little 
morphometric divergence between these two populations, 
despite finding genetic divergence that was suggestive of 
more than 50 million years of separation. New morphologi-
cal data, including internal anatomy, should now be assessed 
for Pantodon.

Phylogenetic affinities of Pantodon. Pantodon has long 
been recognized to be a problematic taxon in the context 
of understanding the phylogeny of Osteoglossomorpha. 
Although generally recovered as close, if not within Osteo-
glossidae, the relationships of Pantodon to other osteoglos-
somorphs is problematic (e.g., Nelson 1968, 1969 discussed 
the conflicting nature of gill arches, infraorbital bones, and 
other aspects of its anatomy, which suggested either a sister 
group relationship to either Osteoglossidae or Osteoglossi-
nae). This phylogenetic difficulty was further discussed by 
Hilton (2003) in an analysis that removed all fossil taxa in-
cluded in his matrix. The resulting strict consensus tree had 
a topology that was largely consistent with that of the full 
analysis, with the exception that Pantodon was recovered in 
a polytomy with Notopteridae and Osteoglossidae (i.e., in 
the fundamental trees it was interpreted as either the sister 
group of Notopteridae or Osteoglossidae, or nested within 
Osteoglossidae). This was offered as an example of the use 
of fossils as arbiters between competing hypotheses of rela-
tionships. The characters supporting each of these alternati-

ve hypotheses were not fully explored in this analysis, and 
the character conflict within Osteoglossomorpha as related 
to the affinities of Pantodon need to be more fully unders-
tood. Based on molecular data, Lavoué, Sullivan (2004; also 
Lavoué, 2016) found Pantodon to be the sister group of the 
rest of Osteoglossiformes (but see Betancur-R et al., 2013; 
Bian et al., 2016, and discussion above). At this point, new 
morphological and molecular analyses are needed to further 
address the phylogenetic position of Pantodon within Osteo-
glossomorpha.

Systematic biology, taxonomy, and monophyly of 
Scleropages. Traditionally, three species have been recog-
nized in the genus Scleropages: S. jardinii and S. leichardti 
from tropical Australia, and the widespread species S. for-
mosus, found from the Mekong basin, Thailand, Myanmar, 
the Malay Peninsula, Borneo, and Sumatra in Southeast 
Asia. Several recent studies have increased the diversity of 
fossil and living taxa described in the genus Scleropages. 
Pouyaud et al. (2003) named several new species of Sclero-
pages based on coloration, slight meristic and morphome-
tric differences, and slight mitochondrial variation; as noted 
above, these are widely held to be color variants of S. for-
mosus and not accepted as valid (e.g., Kottelat, Widjanarti, 
2005; Mohd-Shamsudin et al., 2011; Roberts, 2012; Kotte-
lat, 2013). Scleropages inscriptus was described by Roberts 
(2012) from Myanmar, and diagnosed based on the presence 
of maze-like markings on the head and body, unlike the even 
coloration of S. formosus; it differs also in meristic and mor-
phometric characters from the Australian Scleropages. The-
re are significant taxonomic concerns regarding the Austra-
lian species of Scleropages as well, in that evidence suggests 
that S. leichardti was that the relatively general description 
provided by Günther (1864) was based on a specimen that 
is of unclear provenance but likely originated outside of its 
known range (i.e., the Fitzroy River basin) and has incon-
sistencies with current descriptions of S. leichardti (Pusey 
et al., 2016). Pusey et al. (2016) further suggest that clo-
se examination of the disjunct populations of S. jardinii are 
warranted to determine degree of separation and whether or 
not there is species-level distinction and structure within this 
species. Zhang, Wilson (2017) recently described †S. sinen-
sis from the Early Eocene Xiwanpu and Yangxi formations 
of China based on well-preserved whole body fossils. This 
taxon was assigned to Scleropages based on overall simila-
rities of the skull, caudal skeleton, fins, and scales to modern 
species of the genus. We do not dispute these similarities, 
but note that the cited characteristics (e.g., shape of fins and 
reticulate scales) are all plesiomorphic, at least to the level of 
Osteoglossidae. Indeed, no synapomorphies have yet been 
offered to support the genus Scleropages as a monophyletic 
group, and at least two studies (Taverne, 1998; Xu, Chang, 
2009) have failed to recover its monophyly. Renewed study 
of the genus, including all taxa provisionally included, as 
well as robust outgroup sampling, is necessary to robustly 
define the genus Scleropages.



Systematic biology of Osteoglossomorpha
Neotropical Ichthyology, 16(3): e180031, 2018
26

e180031[26] 

Future directions for molecular systematics of Oste-
oglossomorpha. With the development of high throughput 
sequencing technology and the near-future possibility to 
sequence whole genome at reasonable cost (and the conco-
mitant progresses in computer-based comparative methods), 
we are entering in a new area in fish systematics which will 
complete traditional approaches (morphological examina-
tion and low efficiency sequencing technology) and refine 
our understanding of the phylogeny (and evolution) of Oste-
oglossomorpha (Braasch et al., 2015). Three draft genomes 
of Osteoglossomorpha are already available, Scleropages 
formosus (Austin et al., 2015; Bian et al., 2016), Paramor-
myrops kingsleyae (Gallant et al., 2017) and Arapaima gigas 
(Vialle et al., 2018) and there are plans to sequence additio-
nal ones, such as that of Hiodon and Pantodon (Bernardi 
et al., 2012). Although as promising as each (including this 
one) new technological step can be with the comparison of 
extremely large genetic datasets, it is not expected this will 
be the “panacea” as already evidenced by the incongruent 
results presented by several genomic studies on the phylo-
genetic position of the Osteoglossomorpha (Austin et al., 
2015; Faircloth et al., 2013; Chen et al., 2015; Bian et al., 
2016; Hughes et al., 2018; Vialle et al., 2018). We anticipate 
that this overwhelming amount of genetic data will make 
more sense when they will be analyzed with existing and 
new phenotypic data (especially morphological data) from 
both extant and fossil taxa. In combining all the evidence, 
more reliable phylogenies will be produced.

Historical biogeography of Osteoglossomorpha. Phy-
logenetically based reconstruction of the evolution, inclu-
ding both pattern and process, of the distribution of the living 
Osteoglossomorpha within a changing paleo-geological and 
paleo-climatic context requires the combination of several 
lines of evidence – which are sometimes ambiguous or even 
in conflict – relative to their past geographical distribution 
(direct evidence from the fossil record plus inference), their 
past habitat preference relative to salinity and temperature 
(direct evidence from the fossil record plus inference) and 
the timing of diversification (direct evidence from the fos-
sil record plus inference). As discussed above, there have 
been several attempts made to address these factors, both 
individually and in combination. However, there are nu-
merous methods available that have not been employed for 
analyzing the historical biogeographic patterns exhibited 
by Osteoglossomorpha, including comparative, or cladistic, 
biogeography (e.g., Parenti, Ebach, 2009) and ancestral area 
analysis (Ree, Smith, 2008).

To illustrate one of possible directions for future investiga-
tion of the historical biogeography of the Osteoglossomorpha, 
we explored the potential of using a likelihood model, the dis-
persal-extinction-cladogenesis +J (DEC+J) model (Matzke, 
2013; Ree, Smith, 2008), to infer the evolution of geographic 
ranges within the Osteoglossomorpha. For this analysis we 
used the BioGeoBEARS v.0.2 R-package (Matzke, 2013) and 
the phylogenetic timetree of osteoglossomorpha obtained in 

Lavoué (2016) (this work was published before the systema-
tic reevaluation of †Joffrichthys and †Ostariostoma in Mur-
ray et al., 2018), which includes molecular and morphological 
characters and extant and extinct taxa. We consider a possible 
founder speciation event (J) that allowed dispersal without 
range expansion at nodes (Matzke, 2013). We deleted the out-
group Elops. Six different geographical areas were considered 
in this analysis, each of them being delimited based on the 
continental distribution of the tip (extant and extinct) taxa of 
the tree (Fig. 18). The regions are: A – Afrotropics (= Africa), 
B – Neotropics (= South America), C – Orient (= Southeast 
Asia), D – Oceania (Australia and Papua-New Guinea), E – 
Nearctics (= North America), and F – East Paleartics (= East 
Asia). No combination of areas was a priori excluded from 
the analysis. The maximum number of areas was set to five, 
corresponding to the maximum range occupied by the fossil 
†Phareodus and its closely allied forms of the extinct †Pha-
reodontinae (Li, Wilson, 1996a) (= “†Phareodontins” in the 
tree). All other taxa were restricted to one (or two for Sclero-
pages and †Eohiodon) pre-defined areas.

Results show that the (DEC+J) model provided low su-
pport for ancestral area inference at the deepest nodes of 
the tree and within the family Osteoglossidae (Fig. 18). An 
ancestral area comprising only East Asia (“F”) was inferred 
as the main place where the early diversification of the Os-
teoglossomorpha took place (including the most recent com-
mon ancestor, mrca) of the crown group Osteoglossomorpha, 
which lived during the Jurassic (about 190-150 Ma), though 
there is low support for this node. This reconstruction is in 
agreement with the hypothesis of Li (1997) and Greenwood 
(1970), who suggested that the most recent common ances-
tor of Osteoglossomorpha lived only in East Asia because 
the most ancient and morphologically primitive osteoglosso-
morphs known, such as †Lycoptera, came from this region. 
Hiodontidae (Hiodon plus †Eohiodon) experienced a first ran-
ge extension from East Asia to Nearctics. Then two regional 
shifts are inferred with low support: a first shift from East Asia 
to Nearctics leading to the stem Osteoglossiformes, and a se-
cond shift from Nearctics to Africa (again with low support) 
leading to the crown Osteoglossiformes (excluding †Osta-
riostoma). After that, the central region of diversification of 
the Osteoglossiformes was Africa from where successive and 
independent events of dispersal to other regions occurred whi-
ch were followed by intra-regional diversification (Notopteri-
nae, †Joffrichthys, Arapaima, etc.). The model inferred rapid 
dispersal events with high likelihood between Africa and Sou-
theast Asia to explain the distribution of notopterins. Finally, 
within the early osteoglossids, the model inferred large areas 
mostly driven by the condition coded for the “†phareodon-
tins”, with most of the ancestral area reconstructions at nodes 
receiving low likelihood support. Obviously, this attempt is 
far from complete, and we only present it to demonstrate the 
possibility of using a model-based approach to explore the 
biogeographic history of these fishes. This type of parametric 
approach may represent one direction for future studies of the 
historical biogeography of Osteoglossomorpha.
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Fig. 18. Historical biogeography of Osteoglossomorpha based on ancestral area analysis (AAA). Ancestral area estimates un-
der the unconstrained model DEC+J using the time-calibrated Bayesian phylogeny of Osteoglossomorpha of Lavoué (2016) 
that combines molecular and morphological characters and extant and extinct taxa. Letters from A to F represent the regions 
(see above map) used for the biogeographical reconstruction: A (yellow), Afrotropics; B (green) Neotropics; C (red) Orient; 
D (orange) Australia; E (blue) Nearctics, F (pink) North-Eastern Palearctics (Cretaceous period). The geographical distribu-
tions of extant and extinct taxa are indicated. The most likely ancestral range is provided: ancestral ranges at nodes indicate 
the inferred ancestral distributions before speciation and ancestral ranges at corner positions represent geographical ranges 
immediately after speciation. Black and white pie charts above specific ancestral area reconstruction show the probability 
(white) of the corresponding reconstruction.
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