29 research outputs found

    The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice

    Get PDF
    Aspergillus fumigatus infections cause high levels of morbidity and mortality in immunocompromised patients. Gliotoxin (GT), a secondary metabolite, is cytotoxic for mammalian cells, but the molecular basis and biological relevance of this toxicity remain speculative. We show that GT induces apoptotic cell death by activating the proapoptotic Bcl-2 family member Bak, but not Bax, to elicit the generation of reactive oxygen species, the mitochondrial release of apoptogenic factors, and caspase-3 activation. Activation of Bak by GT is direct, as GT triggers in vitro a dose-dependent release of cytochrome c from purified mitochondria isolated from wild-type and Bax- but not Bak-deficient cells. Resistance to A. fumigatus of mice lacking Bak compared to wild-type mice demonstrates the in vivo relevance of this GT-induced apoptotic pathway involving Bak and suggests a correlation between GT production and virulence. The elucidation of the molecular basis opens new strategies for the development of therapeutic regimens to combat A. fumigatus and related fungal infections

    Molecular matched targeted therapies for primary brain tumors—a single center retrospective analysis

    Get PDF
    PURPOSE: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy. METHODS: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected. RESULTS: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI. CONCLUSION: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11060-022-04049-w

    The evolutionary ecology of C-4 plants

    Get PDF
    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche – growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification

    Climatic controls on C4 grassland distributions during the Neogene: A model-data comparison

    Get PDF
    Grasslands dominated by taxa using the C4photosynthetic pathway first developed on several continents during the Neogene and Quaternary, long after C4photosynthesis first evolved among grasses. The histories of these ecosystems are relatively well-documented in the geological record from stable carbon isotope measurements (of fossil vertebrate herbivores and paleosols) and the plant microfossil record (pollen and/or phytolith assemblages). The distinct biogeography and ecophysiology of modern C3and C4grasses have led to hypotheses explaining the origins of C4grasslands in terms of long-term changes in the Earth system, such as increased aridity and decreasing atmospheric pCO2. However, quantitative proxies for key abiotic drivers of these hypotheses (e.g., temperature, precipitation, pCO2) are still in development, not yet widely applied at the continental or global scale or throughout the late Cenozoic, and/or remain contentious. Testing these hypotheses globally therefore remains difficult. To understand better the potential links between changes in the Earth system and the origin of C4grasslands, we undertook a global-scale comparison between observational records of C4plant abundances in Miocene and Pliocene localities compiled from the literature and three increasingly complex models of C4physiology, dominance, and abundance. The literature compilation comprises > 2,600 δ13C-values each of fossil terrestrial vertebrates and of paleosol carbonates, which we interpret as primarily proxies for the abundance of C4grasses, based on the modern contribution of C4grasses to terrestrial net primary productivity. We forced the vegetation models with simulated monthly climates from the HadCM3 family of coupled ocean-atmosphere general circulation models (OAGCMs) over a range of pCO2-values for each epoch to model C4dominance or abundance in grid cells as: (1) months per year exceeding the temperature at which net carbon assimilation is greater for C4than C3photosynthesis (crossover temperature model); (2) the number of months per year exceeding the crossover temperature and having sufficient precipitation for growth (≥25 mm/month; Collatz model); and (3) the Sheffield Dynamic Global Vegetation Model (SDGVM), which models multiple plant functional types (PFTs) (C3and C4grasses, evergreen, and deciduous trees). Model-data agreement is generally weak, although statistically significant for many comparisons, suggesting that regional to local ecological interactions, continent-specific plant evolutionary histories, and/or regional to local climatic conditions not represented in global scale OAGCMs may have been equally strong or stronger in driving the evolution of C4grasslands as global changes in the Earth system such as decreases in atmospheric pCO2and late Cenozoic global cooling and/or aridification

    Proteins of Thermus thermophilus are resistant to glycation-induced protein precipitation: an evolutionary adaptation to life at extreme temperatures?

    No full text
    In thermophilic bacteria, formation of Maillard products may occur at increased rates because this reaction is favored at higher temperatures. Therefore, specific protective mechanisms against glycation-induced protein precipitation are likely to exist in thermophilic bacteria. Indeed, Thermus thermophilus proteins remained soluble when a cell-free extract of T. thermophilus was incubated at 37°C in the presence of glucose, fructose, or methylglyoxal; whereas E. coli proteins precipitated. In E. coli cell-free extracts, sugar-induced precipitation was accelerated by the addition of 5 μM Fe2+ and inhibited by metal chelators, suggesting that glycoxidation processes are involved in the formation of the precipitate. A low lysine content, endogenous small scavenger molecules, or enzymatic "antiglycation" mechanisms for the degradation of AGEs or their precursors could be excluded as possible causes for the resistance to protein precipitation in T. thermophilus. Therefore, the resistance to glycation-mediated protein precipitation is an endogenous property of thermophilic proteins that was acquired during evolution in environments with high glycation activity

    Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots

    No full text
    This paper carried research on Cassava (Manihot esculenta Crantz) as a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasingCassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S1 population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or over dominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava

    Discordant Monozygotic Parkinson Disease Twins: Role of Mitochondrial Integrity

    Get PDF
    Objective Even though genetic predisposition has proven to be an important element in Parkinson's disease (PD) etiology, monozygotic (MZ) twins with PD displayed a concordance rate of only about 20% despite their shared identical genetic background. Methods We recruited 5 pairs of MZ twins discordant for idiopathic PD and established skin fibroblast cultures to investigate mitochondrial phenotypes in these cellular models against the background of a presumably identical genome. To test for genetic differences, we performed whole genome sequencing, deep mitochondrial DNA (mtDNA) sequencing, and tested for mitochondrial deletions by multiplex real‐time polymerase chain reaction (PCR) in the fibroblast cultures. Further, the fibroblast cultures were tested for mitochondrial integrity by immunocytochemistry, immunoblotting, flow cytometry, and real‐time PCR to quantify gene expression. Results Genome sequencing did not identify any genetic difference. We found decreased mitochondrial functionality with reduced cellular adenosine triphosphate (ATP) levels, altered mitochondrial morphology, elevated protein levels of superoxide dismutase 2 (SOD2), and increased levels of peroxisome proliferator‐activated receptor‐gamma coactivator‐α (PPARGC1A) messenger RNA (mRNA) in skin fibroblast cultures from the affected compared to the unaffected twins. Further, there was a tendency for a higher number of somatic mtDNA variants among the affected twins. Interpretation We demonstrate disease‐related differences in mitochondrial integrity in the genetically identical twins. Of note, the clinical expression matches functional alterations of the mitochondri

    Biosensor-Enabled Multiplexed On-Site Therapeutic Drug Monitoring of Antibiotics

    No full text
    Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point-of-care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody-free assay for on-site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood-based POCT is further illustrated by tracking ss-lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low-cost, sample-independent, and multiplexed on-site TDM, this system can shift the paradigm of "one-size-fits-all" strategy.ISSN:0935-9648ISSN:1521-409
    corecore