525 research outputs found

    Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells

    Get PDF
    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak. © 2014 Barbi de Moura et al

    Development of Smartphone-based ECL Sensor for Dopamine Detection: Practical Approaches

    Get PDF
    In this work, a compact, mobile phone-based ECL sensor apparatus was developed using the phone cameras, screen-printed electrodes (SPE), and mobile app for dopamine detection. Methods of DC voltage application for ECL reaction were comprehensively studied from the mobile phone itself or external power. Under optimized sensing conditions, with disposable carbon SPE and 20 mM coreactant tri-n-propylamine (TPrA), acceptable repeatability and reproducibility were achieved in terms of relative standard deviation (RSD) of intra- and interassays, which were 6.7 and 5.5%, respectively. The biochemical compound dopamine was measured due to its ECL quenching characteristics and its clinical importance. The quenching mechanism of Ru(bpy)32+/TPrA by dopamine was investigated based on the estimation of the constants of the Stern-Volmer equations. The linear range for detectable dopamine concentration was from 1.0 to 50 μM (R2 = 0.982). As the developed mobile phone-based ECL sensor is simple, small and assembled from low-cost components, it offers new opportunities for the development of inexpensive analytical methods and compact sensors

    An analysis of observed daily maximum wind gusts in the UK

    Get PDF
    The greatest attention to the UK wind climatology has focused upon mean windspeeds, despite a knowledge of gust speeds being essential to a variety of users. This paper goes some way to redressing this imbalance by analysing observed daily maximum gust speeds from a 43-station network over the period 1980–2005. Complementing these data are dynamically downscaled reanalysis data, generated using the PRECIS Regional Climate Modelling system, for the period 1959–2001. Inter-annual variations in both the observed and downscaled reanalysis gust speeds are presented, with a statistically significant (at the 95% confidence interval) 5% increase across the network in daily maximum gust speeds between 1959 and the early 1990s, followed by an apparent decrease. The benefit of incorporating dynamically downscaled reanalysis data is revealed by the fact that the decrease in gust speeds since 1993 may be placed in the context of a very slight increase displayed over the longer 1959–2001 period. Furthermore, the severity of individual windstorm events is considered, with high profile recent events placed into the context of the long term record. A daily cycle is identified from the station observations in the timing of the daily maximum gust speeds, with an afternoon peak occurring between 12:00–15:00, exhibiting spatial and intra-annual variations

    SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain Acyl-CoA dehydrogenase

    Get PDF
    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane

    Mapping Direct Seeded Rice in Raichur District of Karnataka, India

    Get PDF
    Across South Asia, the cost of rice cultivation has increased due to labor shortage. Direct seeding of rice is widely promoted in order to reduce labor demand during crop establishment stage, and to benefit poor farmers. To facilitate planning and to track farming practice changes, this study presents techniques to spatially distinguish between direct seeded and transplanted rice fields using multiple-sensor remote sensing imagery. The District of Raichur, a major region in northeast Karnataka, Central India, where irrigated rice is grown and direct seeded rice has been widely promoted since 2000, was selected as a case study. The extent of cropland was mapped using Landsat-8, Moderate Resolution Imaging Spectroradiometer (modis) 16-day normalized difference vegetation index (ndvi) time-series data and the cultivation practice delineated using risat-1 data for the year 2014. Areas grown to rice were mapped based on the length of the growing period detected using spectral characteristics and intensive field observations. The high resolution imagery of Landsat-8 was useful to classify the rice growing areas. The accuracy of land-use/landcover (lulc) classes varied from 84 percent to 98 percent. The results clearly demonstrated the usefulness of multiple-sensor imagery from mod09q1, Landsat-8, and risat-1 in mapping the rice area and practices accurately, routinely, and consistently. The low cost of imagery backed by ground survey, as demonstrated in this paper, can also be used across rice growing countries to identify different rice systems
    • …
    corecore