47 research outputs found

    A Gradient-Interleaved Scheduler for Energy-Efficient Backpropagation for Training Neural Networks

    Full text link
    This paper addresses design of accelerators using systolic architectures for training of neural networks using a novel gradient interleaving approach. Training the neural network involves backpropagation of error and computation of gradients with respect to the activation functions and weights. It is shown that the gradient with respect to the activation function can be computed using a weight-stationary systolic array while the gradient with respect to the weights can be computed using an output-stationary systolic array. The novelty of the proposed approach lies in interleaving the computations of these two gradients to the same configurable systolic array. This results in reuse of the variables from one computation to the other and eliminates unnecessary memory accesses. The proposed approach leads to 1.4 - 2.2 times savings in terms of number of cycles and 1.9×1.9 \times savings in terms of memory accesses. Thus, the proposed accelerator reduces latency and energy consumption.Comment: Proc. 2020 IEEE International Symposium on Circuits and Systems (ISCAS

    SCV-GNN: Sparse Compressed Vector-based Graph Neural Network Aggregation

    Full text link
    Graph neural networks (GNNs) have emerged as a powerful tool to process graph-based data in fields like communication networks, molecular interactions, chemistry, social networks, and neuroscience. GNNs are characterized by the ultra-sparse nature of their adjacency matrix that necessitates the development of dedicated hardware beyond general-purpose sparse matrix multipliers. While there has been extensive research on designing dedicated hardware accelerators for GNNs, few have extensively explored the impact of the sparse storage format on the efficiency of the GNN accelerators. This paper proposes SCV-GNN with the novel sparse compressed vectors (SCV) format optimized for the aggregation operation. We use Z-Morton ordering to derive a data-locality-based computation ordering and partitioning scheme. The paper also presents how the proposed SCV-GNN is scalable on a vector processing system. Experimental results over various datasets show that the proposed method achieves a geometric mean speedup of 7.96×7.96\times and 7.04×7.04\times over CSC and CSR aggregation operations, respectively. The proposed method also reduces the memory traffic by a factor of 3.29×3.29\times and 4.37×4.37\times over compressed sparse column (CSC) and compressed sparse row (CSR), respectively. Thus, the proposed novel aggregation format reduces the latency and memory access for GNN inference

    Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data

    Get PDF
    Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of ΩGWĂ°fÞ ÂŒ Ωαðf=frefÞα, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5–1726 Hz. In the frequency band of 41.5–169.25 Hz for a spectral index of αŒ 0, we constrain the energy density of the stochastic background to be ΩGWĂ°fÞ <5.6 × 10−6. For the 600–1000 Hz band, ΩGWĂ°fÞ <0.14Ă°f=900 HzÞ3, a factor of 2.5 lower than the best previously reported upper limits. We find ΩGWĂ°fÞ <1.8 × 10−4 using a spectral index of zero for 170–600 Hz and ΩGWĂ°fÞ < 1.0Ă°f=1300 HzÞ3 for 1000–1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.231101publishedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de AmĂ©rica.Fil: Maglione, C. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Quiroga, G. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina.Fil: Quiroga, G. Argentinian Gravitational Wave Group; Argentina.FĂ­sica de PartĂ­culas y Campo

    First searches for optical counterparts to gravitational-wave candidate events

    Get PDF
    During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type

    First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Full text link
    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.Comment: 16 pages, 6 figure

    Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10−210^{-2}\,M⊙_\odotc2^2 at ∌150\sim 150\,Hz with ∌60\sim 60\,ms duration, and high-energy neutrino emission of 105110^{51}\,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×10−21.6 \times 10^{-2}\,Mpc−3^{-3}yr−1^{-1}. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era

    FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS

    Get PDF
    During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type

    Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    Get PDF
    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO’s fifth science run. At low frequencies, 40–460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460–1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω(f) < 7.7 × 10[superscript -4](f/900  Hz)[superscript 3], which improves on the previous upper limit by a factor of ~180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio

    Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    Get PDF
    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10–1000 s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3:5 ergs cm⁻2 to F<1200 ergs cm⁻2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ≈ 33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10× better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.J. Aasi ... D.J. Hosken ... W. Kim ... E.J. King ... J. Munch ... D. J. Ottaway ... P. J. Veitc

    A Serial Commutator Fast Fourier Transform Architecture for Real-Valued Signals

    No full text
    This brief presents a novel pipelined architecture to compute the fast Fourier transform of real input signals in a serial manner, i.e., one sample is processed per cycle. The proposed architecture, referred to as real-valued serial commutator, achieves full hardware utilization by mapping each stage of the fast Fourier transform (FFT) to a half-butterfly operation that operates on real input signals. Prior serial architectures to compute FFT of real signals only achieved 50% hardware utilization. Novel data-exchange and data-reordering circuits are also presented. The complete serial commutator architecture requires 2 log(2) N - 2 real adders, log(2) N - 2 real multipliers, and N + 9 log(2) N - 19 real delay elements, where N represents the size of the FFT.Funding Agencies|Swedish ELLIIT Program</p
    corecore