992 research outputs found

    Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    Get PDF
    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency

    Optimal time decay of the non cut-off Boltzmann equation in the whole space

    Full text link
    In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space \threed_x with \DgE. We use the existence theory of global in time nearby Maxwellian solutions from \cite{gsNonCutA,gsNonCut0}. It has been a longstanding open problem to determine the large time decay rates for the soft potential Boltzmann equation in the whole space, with or without the angular cut-off assumption \cite{MR677262,MR2847536}. For perturbative initial data, we prove that solutions converge to the global Maxwellian with the optimal large-time decay rate of O(t^{-\frac{\Ndim}{2}+\frac{\Ndim}{2r}}) in the L^2_\vel(L^r_x)-norm for any 2r2\leq r\leq \infty.Comment: 31 pages, final version to appear in KR

    Demonstration of unconditional one-way quantum computations for continuous variables

    Full text link
    Quantum computing promises to exploit the laws of quantum mechanics for processing information in ways fundamentally different from today's classical computers, leading to unprecedented efficiency. One-way quantum computation, sometimes referred to as the cluster model of quantum computation, is a very promising approach to fulfil the capabilities of quantum information processing. The cluster model is realizable through measurements on a highly entangled cluster state with no need for controlled unitary evolutions. Here we demonstrate unconditional one-way quantum computation experiments for continuous variables using a linear cluster state of four entangled optical modes. We implement an important set of quantum operations, linear transformations, in the optical phase space through one-way computation. Though not sufficient, these are necessary for universal quantum computation over continuous variables, and in our scheme, in principle, any such linear transformation can be unconditionally and deterministically applied to arbitrary single-mode quantum states.Comment: 9 pages, 3 figure

    A particle-hole model approach for hypernuclei

    Get PDF
    A particle-hole model is developed to describe the excitation spectrum of single lambda hypernuclei and the possible presence of collective effects is explored by making a comparison with the mean-field calculations. Results for the spectra of 12C, 16O, 40Ca, 90Zr and 208Pb single lambda hypernuclei are shown. The comparison with the available experimental data is satisfactory. We find that collective phenomena are much less important in hypernuclei than in ordinary nuclei.Comment: 24 pages, 5 eps figures, accepted for publication in Nucl. Phys.

    Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A

    Full text link
    Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are presented. The experiment provides high resolution spectra of excitation energy for 12B_\Lambda, 16N_\Lambda, and 9Li_\Lambda hypernuclei obtained by electroproduction of strangeness. A new theoretical calculation for 12B_\Lambda, final results for 16N_\Lambda, and discussion of the preliminary results of 9Li_\Lambda are reported.Comment: 8 pages, 5 figures, submitted to the proceedings of Hyp-X Conferenc

    Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development

    Get PDF
    De novo establishment of DNA methylation is accomplished by DNMT3A and DNMT3B. Here, we analyze de novo DNA methylation in mouse embryonic fibroblasts (2i-MEFs) derived from DNA-hypomethylated 2i/L ES cells with genetic ablation of Dnmt3a or Dnmt3b. We identify 355 and 333 uniquely unmethylated genes in Dnmt3a and Dnmt3b knockout (KO) 2i-MEFs, respectively. We find that Dnmt3a is exclusively required for de novo methylation at both TSS regions and gene bodies of Polycomb group (PcG) target developmental genes, while Dnmt3b has a dominant role on the X chromosome. Consistent with this, tissue-specific DNA methylation at PcG target genes is substantially reduced in Dnmt3a KO embryos. Finally, we find that human patients with DNMT3 mutations exhibit reduced DNA methylation at regions that are hypomethylated in Dnmt3 KO 2i-MEFs. In conclusion, here we report a set of unique de novo DNA methylation target sites for both DNMT3 enzymes during mammalian development that overlap with hypomethylated sites in human patients

    Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    Full text link
    Low-energy photoelectron–vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s−1 → 2p−1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO+ ions into O+ + N* or N+ + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission

    Regularizing effect and local existence for non-cutoff Boltzmann equation

    Get PDF
    The Boltzmann equation without Grad's angular cutoff assumption is believed to have regularizing effect on the solution because of the non-integrable angular singularity of the cross-section. However, even though so far this has been justified satisfactorily for the spatially homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the uncertainty principle, and analyzing the commutators between the collision operator and some weighted pseudo differential operators, we prove the regularizing effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed on these solutions. For completeness, we also show that when the initial data has this mild regularity and Maxwellian type decay in velocity variable, there exists a unique local solution with the same regularity, so that this solution enjoys the CC^\infty regularity for positive time

    Ion beam analysis of as-received, H-implanted and post implanted annealed fusion steels

    Get PDF
    The elemental distribution for as-received (AR), H implanted (AI) and post-implanted annealed (A) Eurofer and ODS-Eurofer steels has been characterized by means of micro Particle Induced X-ray Emission (μ-PIXE), micro Elastic Recoil Detection (μ-ERD) and Secondary Ion Mass Spectrometry (SIMS). The temperature and time-induced H diffusion has been analyzed by Resonance Nuclear Reaction Analysis (RNRA), Thermal Desorption Spectroscopy (TDS), ERDA and SIMS techniques. μ-PIXE measurements point out the presence of inhomogeneities in the Y distribution for ODS-Eurofer samples. RNRA and SIMS experiments evidence that hydrogen easily outdiffuses in these steels even at room temperature. ERD data show that annealing at temperatures as low as 300 °C strongly accelerates the hydrogen diffusion process, driving out up to the 90% of the initial hydrogen
    corecore