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REGULARIZING EFFECT AND LOCAL EXISTENCE
FOR NON-CUTOFF BOLTZMANN EQUATION

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

ABSTRACT. The Boltzmann equation without Grad’s angular cutoff assumption is believed to
have regularizing effect on the solution because of the non-integrable angular singularity of the
cross-section. However, even though so far this has been justified satisfactorily for the spatially
homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous
Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates
for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based
on a generalized version of the uncertainty principle, and analyzing the commutators between
the collision operator and some weighted pseudo-differential operators, we prove the regularizing
effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed
on these solutions. For completeness, we also show that when the initial data has this mild
regularity and Maxwellian type decay in velocity variable, there exists a unique local solution
with the same regularity, so that this solution acquires the C°° regularity for positive time.

1. INTRODUCTION

Consider the Boltzmann equation,

where f = f(t,r,v) is the density distribution function of particles with position z € R? and
velocity v € R? at time t. The right hand side of (1.1) is given by the Boltzmann bilinear collision
operator

Qo.t) = [ | [ Blo=veo) ) f0) = gt0.) )} dod..

which is well-defined for suitable functions f and g specified later. Notice that the collision operator
Q(-, ) acts only on the velocity variable v € R3. In the following discussion, we will use the
o—representation, that is, for o € S?,

, vt v |u— v ;o vt vl v — vy
v = + o, U, = — o,
2 2 2 2
which give the relations between the post and pre collisional velocities.

It is well known that the Boltzmann equation is a fundamental equation in statistical physics.
For the mathematical theories on this equation, we refer the readers to [22, 23, 33, 37, 57], and the
references therein also for the physics background.

In addition to the special bilinear structure of the collision operator, the cross-section B(v—vy, o)
varies with different physical assumptions on the particle interactions and it plays an important
role in the well-posedness theory for the Boltzmann equation. In fact, except for the hard sphere
model, for most of the other molecular interaction potentials such as the inverse power laws, the
cross section B(v — v,,0) has a non-integrable angular singularity. For example, if the interaction
potential obeys the inverse power law r—(®~1 for 2 < p < 0o, where r denotes the distance between
two interacting molecules, the cross-section behaves like

_92_9g v — 0 ™
B(|v = v,],c080) ~ [v —v,[70727** cosf={(—=,0), 0<0< 5
2000 Mathematics Subject Classification. 35A05, 35B65, 35D10, 35H20, 76P05, 84C40.
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with
I YPIVI S S T DS S
p—1 p—1
As usual, the hard and soft potentials correspond to 2 < p < 5 and p > 5 respectively, and the
Maxwellian potential corresponds to p = 5. The fact that the singularity 67272% is not integrable
on the unit sphere leads to the conjecture that the nonlinear collision operator should behave like

a fractional Laplacian in the variable v. That is,
Q(f, f) ~ —(—A,)°f + lower order terms.
Indeed, consider the Kolmogorov type equation
fetv - Vof = =(=4Ay)°f.

Straightforward calculation by Fourier transformation shows that the solution is in Gevrey class
when 0 < s < 1 and is ultra-analytic if 3 < s < 1 for initial data only in L?(R2 x R?) if it admits
a unique solution (see [50] for a more general study). However, for the Boltzmann equation, the
gain of Gevrey regularity of solution is a long lasting open problem which has only been proved so
far in the linear and spatially homogeneous setting, see [48].

The mathematical study on the inverse power law potentials can be traced back to the work
by Pao [52] in the 1970s. And in the early 1980s, Arkeryd in [15] proved the existence of weak
solutions to the spatially homogeneous Boltzmann equation when 0 < s < %, while Ukai in [53]
applied an abstract Cauchy-Kovalevskaya theorem to obtain local solutions in the functional space
of functions, which are analytic in x and Gevrey in v. However, the smoothing effect of the collision
operator was not studied at that time.

Since then, this problem has attracted increasing interests in the area of kinetic theory and a
lot of progress has been made on the existence and regularity theories. More precisely, that the
long-range interactions have smoothing effects on the solutions to the Boltzmann equation was
first proved by Desvillettes for some simplified models, cf. [27, 28]. This is in contrast with the
hard sphere model and the potentials with Grad’s angular cutoff assumption. In fact, for the hard
sphere model, the cross-section has the form (in the o representation)

B(|v — vy, cos8) = go|v — val,

where qq is the surface area of a hard sphere. For singular cross-sections, Grad [37] introduced the
idea to cut off the singularity at = 0 so that B(Jv—v.|,cos ) € L'(S?). This assumption has been
widely accepted and is now called Grad’s angular cutoff assumption which influences a few decades
of mathematical studies on the Boltzmann equation. Under this angular cutoff assumption, the
solution has the same regularity, at least in the Sobolev space, as the initial data. In fact, it was
shown in [34], that the solution has the form

flt,z,v) =alt,z,v) f(0,z — vt,v) + b(t, x,v),

when the initial data f(0,,v) is in some weighted L% , space. Here, a(t,z,v) and b(t,z,v) are
in the Sobolev space Ht{m} for some 6 > 0. And the term f(0,z — vt,v) just represents the free
transport so that it is clear that f(¢,z,v) and f(0,z,v) have the same regularity.

One of the main features of the Boltzmann equation is the celebrated Boltzmann’s H-theorem

saying that the H-functional
H(t) = / flog fdzdv,
R3 xR3

satisfies

where

>
—~
~~
~—

|

- / QUf, f)log fdedv > 0,
R3 xR3
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which is called the entropy dissipation rate. Notice that D(t) is non-negative and vanishes only
when f is a Maxwellian. The non-negativity of D indicates that the Boltzmann equation is a
dissipative equation. This fact is a basic ingredient in the L' theory of the Boltzmann equation,
see for example [33].

By using the entropy dissipation rate D and the “Q% smoothing property”, the formal smoothing
estimate was derived by P.-L. Lions (see the complete references in [6])

S 0 1

IVF/F @)™ < CIFIE Ul + DY, 6= o= 6= =

for any constant m > 3. Notice that the above regularity estimate is on /f but not f itself.
Later, some almost optimal estimates together with some extremely useful results, such as the
cancellation lemma, were obtained in the work by Alexandre-Desvillettes-Villani-Wennberg [6].
By using these analytic tools, the mathematical theory regarding the regularizing effect for the
spatially homogeneous problems may now be considered as quite satisfactory, see [10, 11, 29, 30,
32, 39, 48, 55], and the references therein.

However, for the spatially inhomogeneous equations, there are much less results. The main
difficulty comes from the coupling of the transport operator with the collision operator, and the
commutators of the differential (pseudo-differential) operators with the collision operator. There
are two progresses which have been achieved so far. One is about the local existence of solutions
between two moving Maxwellians in [4], obtained by constructing upper and lower solutions. The
other one is about the global existence of renormalized solutions with defect measures constructed
in [12], which becomes weak solutions if the defect measures vanish. Some results on similar but
linear kinetic equations were also given in [9] and [18]. In particular, a generalized uncertainty
principle a la Fefferman [35] (see also [45, 46, 47]) was introduced in [9] in order to prove smoothing
effects of the linearized and spatially inhomogeneous Boltzmann equation with non-cutoff cross
sections, and get partial smoothing effects for the nonlinear Boltzmann equation. In the following
analysis, this partial regularity result, together with its proof, will also be used.

This paper can be viewed as a continuation of our recent work [9]. Under some mild regularity
assumption on the initial data, we will prove the existence of solutions and their C'>° regularity
with respect to all ( time, space and velocity) variables.

Even though it is still not known whether only some natural bounds, such as total mass, energy
and entropy on the initial data, can lead to the C'*° regularizing effect, as far as we know, the
results shown in this paper are the first ones justifying the C'*° regularizing effect for the nonlinear
and spatially inhomogeneous Boltzmann equation without Grad’s angular cutoff assumption.

In order to state our theorems, let us first introduce the notations and assumptions used in this
paper.

The non-negative cross-section B(z, o) (for a monatomic gas, which is the case considered herein)
depends only on |z| and the scalar product < ﬁ,a >. In most cases, the collision kernel cannot
be expressed explicitly, but to capture the essential properties, it can be assumed to have the form

U — Uy
B(Jv — vy, cos8) = ®(Jv — v.|)b(cosb), cosh = <m

Furthermore, to keep the presentation as simple as possible, and in particular to avoid the
difficulty coming from the vanishing of the cross-section at zero relative velocity, we assume that
the kinetic factor ® in the cross-section is modified as

(1.2) olv—v))=(1+Pp-ul)?, ~FeR

This point can certainly be removed using our whole calculus, at the expense of technical and more
complicated details.
Moreover, the angular factor is assumed to have the following singular behavior

(1.3) sinf b(cosf) ~ KO 17 when 6 — 0+,
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where 0 < s < 1 and K is a positive constant. In fact v = 0 corresponds to the Maxwellian
molecule, v < 0 corresponds to the modified soft potential, and v > 0 corresponds to the modified
hard potential. The singularity will be called mild for 0 < s < % and strong for % < s <1
The case s = % is critical in the sense that different computations are required in many parts of
our proofs for mild and strong singularities, as will be seen below. This is similar to the known
fractional Laplacian studies.

It is now well known from the work [6] that the singular behavior of the collision kernel (1.3)
implies a sub-elliptic estimate in the velocity variable v. In the following analysis, we shall need
a slightly precised weighted sub-elliptic estimate in the velocity variable. We shall show that for
yeRand 0<s<1,if f>0,£20, f € L1 Llog L(R3), there exists a constant C' > 0 such that

for any function g € H'(R?) we have
(1.4) CilHAiWymgH%’Z(Rg) < (=Q(f,9); 9)r2ms) + C||f||L;(1R3)||9||2Li+/2(mg)a

where 4 = max(y+,2 —41), 4" = max{y, 0}. Here W; = Wi (v) = (1 + |[v|?)/? = <1}>l L eR,is
the weight function in the variable v € R3.

Similar sub-elliptic estimates, first proved in [6] and then developed in many other works such
as [51] in a linearized context, have been used crucially at least for the following two aspects:

i) the proof of the regularizing effect on the solutions to the spatially homogeneous Boltzmann
equations, see [10, 11, 32, 39, 48];

ii) the proof of existence of solutions to the nonlinear and spatially inhomogeneous Boltzmann
equation [4, 12, 57].

In this paper, we will apply this tool in order to study the complete smoothing effect for the
spatially inhomogeneous and nonlinear Boltzmann equation.

It is now well understood, see [13] and references therein, that Landau equation corresponds to
the grazing limit of Boltzmann equation. However, while Landau operator involves usual partial
differential operators, it should be kept in mind that fractional differential operators appear in the
Boltzmann case, see [5, 2]. Therefore, the analysis on the Boltzmann equation appears much more
involved because it requires the unavoidable use of Harmonic Analysis. In particular, we shall use
a generalized uncertainty principle which was introduced in [9], and the estimation of commutators
used in the work [49] for the study of hypo-elliptic properties.

Throughout this paper, we shall use the following standard weighted (with respect to the velocity
variable v € R?) Sobolev spaces. For m, [ € R, set R” = R; x R3 x R3 and

H"(RT) = {f € S'®R"); Wi(v) f € H"(®") },
which is a Hilbert space. Here H™ is the usual Sobolev space. We shall also use the functional
spaces HF (Rg’ ) and HF(R?), specifying the variables, the weight being always taken with respect
to v € R3.
Since the regularity property to be proved here is local in space and time, for convenience, we

define the following local version of weighted Sobolev space. For —oco < T7 < Ty < 400, and any
given open domain 2 C R3, define

H(Th, To[x9 x R3) = {f e D (|11, To[xQ x R3);

(W) f € H"(RT), ¥ € C(IT1, Ta]), ¥ € C(@) .
Our first main result is about the smoothing effect on the solution and can be stated as follows

Theorem 1.1. (Regularizing effect on solutions)

Assume that 0 < s < 1, vy € R, —o0o < T1 < Ty < 400 and let Q C Ri be an open domain.
Let f be a non-negative function belonging to H;(JT1, To[xQ x R3) for all 1 € N and solving the
Boltzmann equation (1.1) in the domain [Ty, To[xQ x R in the classical sense. Furthermore, if f
satisfies the non-vacuum condition

(15) ||f(t,1’, )”Ll(R%) > 07
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for all (t,z) €Ty, To[xS, then we have
feH, (T, To[xQ2 x RY),

for any l € N, and hence
f e C™(|Ty, To[xQ; S(RY)).

With this result in mind, a natural question is whether the Boltzmann equation has solutions
satisfying the assumptions imposed above. Let us recall that solutions constructed in [4, 12] do not
work for our purpose because of the lack of the weighted regularity H7. For Gevrey class solutions
from [53], there is of course nothing to prove.

Thus, our second main result is about the local existence and uniqueness of solution for the
Cauchy problem of the non-cutoff Boltzmann equation.

We consider the solution in the functional space with Maxwellian type exponential decay in the
velocity variable. More precisely, for m € R, set

EM(RY) = {g € D’(Rg)v); Jpo > 0 s.t. e”°<”>2g € H"l(Ri,J}’
and for 7' > 0
eM(0.T) xRS,) = {f€CO0,TD(RS,)); 3p>0

T,V

s.t. e”™’ f e 000, T); H™(RS ))}.

Theorem 1.2. Assume that 0 < s < 1/2 and v+ 2s < 1. Let fo > 0 and fo € 5(’)“0 (RS) for some
4 < kg € N. Then, there exists Ty > 0 such that the Cauchy problem

fe+v-Vof =Q(f, f),
(1.6) { fli=o = fo,

admits a non-negative and unique solution in the functional space £ ([0, T.] x RS).
Furthermore, if we assume that the initial data fo is in ES(RS) and does not vanish on a compact
set K C R2, that is,
||f0(3?, ')HLI(R%) >0, VzeK,

then we have the regularizing effect on the above solution, that is, there exist 0 < Ty < T, and a
neighborhood Vi of K in RS such that

f e (0, To[xVo; S(R3)).

Moreover, if v < 0, the non-negative solution of the Cauchy problem (1.6) is unique in the
functional space C°([0,T.]; H)'(R®)) for m > 3/242s, p > 3/2+ 4s.

Remark 1.3. For the inverse power law potential r—®=Y | the condition 0 < s < 1/2,v+2s <1
corresponds to 3 < p < oo which includes both soft and hard potentials.

At the moment, it is not clear whether we can relax the regularity assumption initially made on
the solutions. Note that for example, the condition that f € L*N L% (R7) is enough to give a mean-
ingful sense to a weak formulation for the spatially inhomogeneous Boltzmann equation. However,
the analysis used here can not be applied to this case, and so further study is needed. On the
other hand, the above two theorems give an answer to a long lasting conjecture on the regularizing
effect of the non-cutoff cross-sections for the spatially inhomogeneous Boltzmann equation.

Finally in the introduction, let us review some related works on the regularizing effect and the
existence of solutions for the Landau equation. The regularizing effect from the Landau collision
operator has been rather well studied. See [31, 24, 13] for the spatially homogeneous case. For
the spatially inhomogeneous problem, a regularizing result was obtained in [26], where the H®
regularity is assumed on the solutions to start with. And similar result was also recently proved
for the Vlasov-Maxwell-Landau and the Vlasov-Poisson-Landau systems, cf. [25] and the refer-
ences therein. As for the existence of solutions, see [31] where unique weak solutions for spatially
homogeneous case have been constructed with rather general initial data, and see [36] where the
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classical solutions for the spatially inhomogeneous case have been constructed in a periodic box
with small initial data.

The rest of the paper will be organized as follows. First of all, in the next section, we will
use the pseudo-differential calculus to study the upper bounds on the collision operator. We shall
give a precise coercivity estimate linked to the singularity in the cross-section, and estimate the
commutators between some pseudo-differential operators and the nonlinear collision operators. In
Section 3, the regularizing effect will be proved under the initial regularity assumption on the
solution. The strategy of the proof is as follows. We first choose some suitable mollifiers such
that the mollified solutions can work as test functions for the weak formulation of the problem.
We then establish a small gain of the regularity in the velocity variable, by using the coercivity
estimate coming from the singularity of the cross section. On account of the generalized uncertainty
principle, a small gain of the regularity in the space and time variables can be derived. The H >
regularity will follow from an induction argument. Finally, in Section 4, local solutions to the non-
cutoff Boltzmann equation which meet the initialization condition of Theorem 1.1 are constructed,
using a family of cutoff Boltzmann equations with time local uniform bounds independent of cutoff
parameter in some weighted Sobolev space. In particular, the uniform bounds are established with
the help of time dependent Maxwellian type weight functions which were introduced in [53, 54]. The
convergence of the approximate solutions follows from compactness argument, while the uniqueness
of the solutions can also be proved by using our sharp upper bounds on the collision operator.

2. PSEUDO-DIFFERENTIAL CALCULUS

Under the non-cutoff cross section assumption, the Boltzmann collision operator is a (nonlinear)
singular integral operator with respect to v € R3. In the linearized case, it behaves like a pseudo-
differential operator.

In this section, we study the pseudo-differential calculus on the Boltzmann operator. It is one
of the key analytic tools for proving the regularizing effect of the non-cutoff Boltzmann equation.
Even though the regularity proved in this paper is local in space and time variables, note that the
collision operator is non-local in the space of v variable. Moreover, since the kinetic factor in the
cross-section is of the form (v)” which might be unbounded, we need to consider the multiplication
by the weight function W;(v) of the pseudo-differential operators. Hence, they are not the standard
pseudo-differential operators of order 0 on the usual Sobolev space. In other words, we shall
consider pseudo-differential operators with unbounded coefficients on the weighted Sobolev space
H™(R2). The variables (t, z) are considered as parameters for the collision operators in this section.

2.1. Upper bound estimates. We shall need some functional estimates on the Boltzmann col-
lision operator in the existence and regularization proofs below. The first one is about the bound-
edness of the collision operator in some weighted Sobolev spaces, see also [5, 7, 39] .

Theorem 2.1. Let 0 < s <1 and v € R. Then for any m, o € R, there exists C > 0 such that

(2.1.1) 1QUf, Pl amws) < C||f||L;++W28)+(Rg)||9||ngr‘f‘y-12s>+(n@g)
forall f € Ly (1 1o+ (RY) and g € HIEZ ) (RY) .
Remark 2.2. .

(1) The collision operator Q(f, g) behaves differently with respect to f and g: (2.1.1) shows that,
in some sense, it is linear with respect to the second factor in the velocity variable v because the
action of differentiation of Q(f, g) with respect to v goes only on g when considered in the Sobloev
space. This is clear for the Landau operator which is the grazing limit of the Boltzmann operator.
(2) The estimate (2.1.1) is in some sense optimal with respect to the order of differentiation (exact
order of 2s) and also with respect to the order of the weight in v coming from the cross-section.
In [39], the cases of both the modified hard potential and Maxwellian molecule type cross-sections
corresponding to 0 < v < 1 are discussed. Let us also mention that a similar estimate was given
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in [8], but it is not optimal in terms of weight and differentiation. However, its proof is more
straightforward as it only uses the Fourier transformation of collision operator (Bobylev’s type
formula [16] and see also the Appendiz of [6]). For our purpose, the full precise estimate (2.1.1)
will be needed.

Proof of Theorem 2.1 :
Firstly, we consider the case when o = 0. To prove (2.1.1) in this case, it suffices to show that
for any m € R

(2.1.2) ‘(Q(ﬁ 9). h)

< m S h —m .
e _C\|f||L§W+23)+(R;’;)HQHH(WEN(Rg)H || r-m(®s3)

The proof needs some harmonic analysis tools based on the dyadic decomposition. It is similar to
the proof in [39], where the hard potential case v > 0 was studied. Interested readers may refer to
the papers [5, 6, 39] for more details, though we will keep the paper self-contained.

Recall that

(@ 1) . = [ [ eost) (0000 = vlgo)A) = o) dodved,
where ®(|v — vi]) = P(Jv" — v}]) = (V' —vL)7. Set
F(v,0.) = @(Jv = vi|)g(v),
and write

o (Q(f, 9), h)LQ(R%) - /R /S b(cos 0) f(v.) F (v, v.) {h(v') — h(v)}dodv.dv

= / f () Uy = Uy)du,.
R3

Then we have (formally) by inverse Fourier formula,

U, = / b(cos 0)F (v, vy ) h(v)dodv = / H(&,n,v,)E(€, v,)h(n)dedn,
R3 J§2 R3 JR3

where (also formally)

H(&,m,v4) ) /S ] bk - o)™ dody

[v—wx|

| / bk - 0)e =57 ds | do
S2

s vt vy

| / (i - )e TR dg | du, (i = n/In])
SQ

[

s vt vy

ptv-E—ith n[/ b(ﬁ.U)e—i\n\’”}”*"’da}dv
SQ

.J)e_iv*'U7 [/ ei“‘(g_"ﬂd’v} do
R3

- o)e” " do §(6 — ),

%\%\%\%\

|
w

Il
a— o
=

9]

o
~
<t

Y]

with

1 1
n = 50— nlo), n+=§(n+|n|0),

so that

Uy = /R 3 [ /S 2 b(ﬁ~a)e*i”*'"_do}F(n*,v*)ﬁ(n)dn.
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On the other hand,
Us E/ / b(cos 0)F (v, vs)h(v)dodv
R3 Js2
:{/ b(cos@)da}/ E(n,v)h(n)dn
§2 R3

:/Rg [/SQ b(ﬁ-o)da}ﬁ(n,v*)fl(n)dn,

because (formally) we have

/ b(cosO)do = / b(7 - o)do = const.
S2

S2

Therefore, we have obtained the following generalized Bobylev formula

(@(f. 9). )

L2(R3)

o = [ el [ v a{e s Bt v - Fov) Vit dndo av.

= fvy) [/ b(7 - a){ei”*'"+ﬁ'(n+, Vi) — ei”*'"ﬁ’(n, v*)}
R3 R3 Js?
X ei”*'”ﬁ(n)dndo} dv,.

Notice that the above derivation is only formal for non-cutoff cross-section because we can not
split the gain and loss term in this case. However, the derivation can be easily justified as a limit
process of cutoff cross-sections when combining the gain term and loss term together.

We now introduce a dyadic decomposition in R3 as follows:

> ok(w) =1, ¢r(v) = (2 ") for k>1 with 0 < ¢g, ¢ € C5°(R?),
k=0

and
supp ¢o C {|v| <2}, supp ¢ C {1 < |v[ < 3}.
Take also ¢g and ¢ € Cg° such that

¢o=1 on {lv| <2}, supp ¢ C {|v| < 3},

$p=1 on {1/2 < |v| <3}, supp ¢ C {1/3 < |v| < 4}.

Furthermore, we assume that all these functions are radial. From [v' —v,| < |v —v,| < V20 —v.],
it follows that

Ok (v = ) ok (v = v2) = (v — va) = Pk (v = v2) (v — ), k=0,

and thus we get

(s 9). h)mm) :;/R | 6e0s ) (0) Fi(w, ve) {0/, v2) = (v 0.)Ydordved,

where

(2.1.5) Fip(v,v.) = (v — ve)@(Jv — vs|)g(v), hi(v,vs) = dp(v — ve) (V).
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Similarly to (2.1.4), we also obtain

(s 9). )Lz(m 7;0 [ 1) /R/S e B v.) — e 1 (0. }

X ey (1), v*)dndo} dv,
) ZK}“ (vs)dvy.
R3

In the following, we will estimate Y .-, [K*(v,)|, regarding v, as a parameter.
By setting
Q= {0 eS*:h-0>1— 21_2k<n>_2}7

and

Fk(nvv*) = eiv*‘nﬁk(n7v*>a f[k(%v*) = ew*'nhjk(n7v*)’
we split K*(v,) into

K*(v,) Z/R3 /S2rm b(7 - U){E;(n+7’l)*) - E(n,v*)}mdndg
* /Rs /§2ch b - U){E;(n+, Ux) — El;(n, U*)}mdnda

=K{(v.) + K5 (v.).

Note that
(2.1.6) / 62 b(cos 0)do = 271'/ sin 6 b(cos 0)6*d6
520 {6€[0,7/2); 5in(0/2) <2~ () ~1}
< Cn)2s22kEs=2) - if 0 < s < 1,
(2.1.7) / b(cosB)do = 277/ sin @ b(cos 0)df
$2NQg {0€[0,m/2];sin(0/2)227F () =1}

< CO(n)*2%ks for any s > 0.

It follows from (2.1.7) that

(2.1.8) \KE (v, |</RS /SmL i o)
< ( Lo L, o By,
x ( L/ IR i 2d77d0> "

l{k(nvv*)
<C2%% ||(Dy) ™2 Fio(v, v) }| 12 [[{Dw) ™™ (v, 02) || 2

Fr(r*,0.) — Fi(n,v.) dndo

2) dndo> v

i, .)

2

Fk(n+7v*) +

Here, we have used the change of variables  — 7, which is regular because the Jacobian can be
computed, with 77 = 77/|n\, as
50

1 . 1
g(l‘i’O’T}) ZCOS 5

1+f @il| =

=

It should be noted that after this change of variable, 6 plays no longer the role of the polar angle
because the “pole” 77 now moves with ¢ and hence the measure do is no longer given by sin 8d6d¢.
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However, the situation is rather good because if we take 77 = 5™ /|nT| as a new pole which is
independent of o, then the new polar angle v defined by cost = 7T - o satisfies

0
Y=gz do=sinydpds, €07
and thus 6 works almost as the polar angle. Therefore, since (n) < 2(n™) < 2(n) we have
—~ 2
[ s Bt v duds < 0 [ Dot Bt o) ant
R3 Js2nQe R,

with
Do) = / b(ii- o) (1, ) )™ do
S2NQ¢

S C/ <77(77+7 0_) >2m+250—2—23d0
S2NQ¢
w/4
S C<,’7+>2m+28/ q/}72725 sin 7/Jd1,b § 22ks<77+>2m+4s ,
2k )1

which implies (2.1.8). Notice that for p = 0,1, 2,

2625 =P) |y — v, [Py (v — v, ) B(|Jv —
() (2T

v — U*>'y+25

(219) >(’Y+25)+ ¢k( U*)

‘<c

< C(v)('y“s oK (v — vy).
Then, recalling (2.1.5) and using (2.1.9) with p = 0 we have

<Dv>m+25

k (v+2s)T
|K2 (’U*)| §C<U*> <’U*>(’Y+28)+

{22kst(U,U*)} ||<Dv>_mhk(v7v*)”L2

L2

L/~ B 1/2
<O (Jduw —v) (D)™ glE, 2Dl )

(v+28)t
1/2
% (19w = v)(Du) ™" hll3e + 275 (Do) "R )
::CFk(U*),

where T'g (v, ) stands for the quantity defined by this right hand side up to a constant multiple.
On the other hand, in order to estimate K (v, ), write

(Bt ) = Bt o) fian,0) = {FuGt 00) = B, v0) H{wn, v00) = b v2) |
- (VE) (v )

1 —_— —_— e
‘/o {(FR) 6 + 7 =)0 = (VE) 0 v ))dr |- (0 =0 hanv,).
Correspondingly, we decompose K¥(v,) into
Kb () = KFL(0,) + K2 (0,) + KF(0.),

For the variable transformation n — n* = %(77 + |njo), we denote its inverse transformation
" — n by 1y (n*). Then

K10 == o o, i )"

<o (0) - (VE) 01 v oo v )iy do
=0, with n~ (o) = s (n") —n",
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because 01,02 € S? N Qy, are symmetric with respect to each other in the sense that, cf Figure 1,

N (01) = Yo, (") =0 = —(Wo,(n*) = ") = =17 (02).

Yo (17)

FIGURE 1. Symmetry of o1 and o9

Write K (v,) into

Kf'(v,) = // /Rg)/szmk VFk)(n++T(77_77+)7U*)'(77_77+)}

X {(Vﬁk) (mt +s(n—nt),v) - (n— n*)}dnda) drds.

Since |n —nt|? = |n~|> = |n|?sin®(6/2) and the change of variable n* + 7(n —nt) — 7 is also
regular (see Page 2044 of [9]), (2.1.6) implies

witwse [ (L L oo o] (VA vt -t

X ’ (V;;) (nt +s(n—n"),v.) dnda) drds

<o [ [ (L[ o om | (TE)a +rt-1).0

: </Ra / b7 )| (Vi) 0 + st =), v.)

<C2C) )24 (T E) | gacany | )~ (T ) 2w

dnda) v

1/2
dnda) drds
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Hence, we have obtained, by using (2.1.9) with p =1

<Dv>m+2s
(0,)(F29)7

X ||2_k(v — v ) hg (v, v:) || g—m

K17 (0)] <Co) 029" 2" = v Fie(v,v.)})

L2

N~ s _ 1/2
<C)0 2 (dr(o = v ) (D)™ gl 427 F (D) R, )
(v+29)t+

(v+29)F
7 —my (|12 —k —my (|12 1/2
x (9w = v)(Du) ™" hllEe +27H (Do) Rl )

which has the same bound T'x(v.) as in the previous case, up to a constant factor. Finally, we
consider

s =- [ [ (], Lo v (T o+ mst =), v yrn =)
X {E;(nﬂ v*)}dnda) drds.

Then, by using (2.1.9) with p = 2, we have

<Dv>m+25

k,3 (y+2s)T
|K1 (U*)| SC¢<U=‘<> <’U*>(’7+25)+

{2592y — 0, 2y (v, 0.))

1 (v, v )l 1 =m

L2
SOFk(U*).
Therefore, it follows from Schwarz’s inequality that
(@ n),, | <l
(Sl — v Doy, w2k g 1)
=0 * Y L(wﬂs)+ ! L( +28)F

0 ~ 1/2
< (S0 — D) hlFa + 27K (D) R )
k=0
< m s —m
<Cliflss ., Nollgrsze (o,

which yields (2.1.2). Now the proof of Theorem 2.1 is complete for the case oo = 0.
To prove (2.1.1) for the case a # 0, it suffices to show that

2110 |(QU.o). (1)

< C||f||L;++(W+25 +<R3>”9”H(’Zﬁ125 R3)||h||H L(R3)-

L2(R3) )

The argument is similar to the one for & = 0, up to the estimation on hy(v,v,) in (2.1.5) which
must be replaced by

P (v — v:) (V) *h(v) = (V)" g (v, vi).
We can write

(2.1.11) ()R (v,,) =((V2)* + 28N (v, v, ) e (v, 04, if >0,

<’U*> ) min{(y+2s)*,—a}

(2.1.12) (V) *h(v,vy) = <2k Y (v, vi) by (v, 1), if o <0.
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with a suitable 9y (v, v,) belonging to Cg°(R3), uniformly with respect to k,v.. For p =0,1,2, we
have

2k(et25=p) |y — p, [Py (v — v.)B(|v — va])

(2.1.13) ’ (v, )(atr+29)*
v — v, )ty t2s
: C<<>(a+>w+2s+¢k( v.) < C)OFHIT g (0 — ),

which is similar to (2.1.9). We first consider the case o > 0. It follows from (2.1.7) that

|K2 (ve)] <( +2ka / / b(i-o ‘Fk Fk (n,vs) ’wkhk 7, 04)|dndo
R3 SZOQC
1/2
k ~ 2m+2s = + 2 = 2
(0" + 25 i - o) (> (| Bt o)+ B, va)| ) dndo
R3 J$2nQ¢
. ) 1/2
( / / ()22 G (1, ) dndcr)
R3 Szﬂﬂc

<C2%5 ((04)* + 2% [(Do)™ 2 Fi (v, v) Y| 1o (Do) ™™ (v, v || 2.

Then, recalling (2.1.5), and using (2.1.9) and (2.1.13) with p = 0, we have
< >m+2s

otz )

KX (0,)] <C {<v*>a+<v+2s)*

L2

(a+y+2s)* <Dv>m+25 k(a+2s) —m
+ (v.) e L T CAN) X COTRYY | I A 102X R PRI
(ve)loty L2
1/2
<O 02 (g4 (v = 0. )(D,) " 22 + 2R (DR, )
(etyt+2s)t (aty+2s)t

s (I9n(0 = v (Do) hl + 27 D) h3:)
::Crk(v*)7

where I'¢(v,) stands for the quantity defined by this right hand side up to a constant multiple.
Performing the same computation as above for K¥(v.), it follows from (2.1.6) that

k, k, a
K7 (00)] + [ By (0)] < C TR (v),

so that (2.1.10) holds in this case.

The estimation on the case o < 0 is also similar by using (2.1.12) if one considers the cases
7+25<0,0<vy+4+2s < —aand v+ 2s > —a separately. Details are omitted. And this completes
the proof of Theorem 2.1.

In the following, we need also estimates on the commutator between the collision operator Q
and the weight W;. For this purpose, estimations on |[W; — W/| are needed.

Lemma 2.3. Let ]l € N. There exists C > 0 depending only on | such that

0 0
(2.1.14) = V[/l|<Csm< )(Wl+Wl*> <0sm( )WlWl*,
and
0 6 ,
(2.1.15) |W, — W/| < Csin W)+ W/ Wy, + sin'~ 3 Wi,
Proof : It follows from |v — v, = |[v/ — v.| and |v|? + |v.|? = [v']? + |v.|? that, for any A > 0

o] < /PP [oif? W < 22N WL+ W L)
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. 0
lv — v'|? = sin® (2> v — vi|?,

where 0 < 0 < /2. Taylor formula yields

On the other hand

W= Wi < Clo—v/|(Wir +Wi,)
< Csin (g) v — u*|(Wl’,1 YW L+ W/,l)
< Csin (g) ' — v;|(Wl’_1 LW, )
< Csin (Z) (Wi+wi ) (Wi, +wiy )
< Csin <§> (W} +W/,) <Csin (Z) wWiw/ .,

which gives (2.1.14). For (2.1.15), we have
We-wi| < Clo—v|(Wia +Wiy)

0 (lgl)
< Csin <) v — v, VV[,1+<1+\1)—U'+U’|2>

2
< (Csin 0 |v’—v’\(W’ +|U—U/|l_1)
> 2 * -1
< Csin 0 (W’ + Wy )W’ + sin' ™! 0 [v' — ol ]!
< 5 1 1, ) Wi 5 *
S C'sin <g) (Wl/ + Wll_1W1/7* + Sinl_l (g) Wl/7*) .

And this completes the proof of the lemma.

Lemma 2.4. Letl € N, m € R.
(1) If 0<s<1/2, there exists C > 0 such that

2116 |((% QUL ) - Q. Wig), 1)

< C”fHLLWJr (]R?;)HQHLZZ+7+ @®3) |7l L2 (®s).-

L2(R3)

Moreover, if | > 3 (actually, we need only | > % + 2s), then

(2.1.17)

(W QUf. 9) - QUF, Wi ), h)

(2) If1/2 < s <1, then for any € > 0, there is a constant Ce > 0 such that

L2(R9) < C||f||Ll2+w+ (Rg))HQHLf+W+ (R3)||h||L2(R3)~

< CE||f||Lzl+2s—1+w+(Rg)HgHHsz;;ffﬂJr (R%)lthLz(R%) )
and
(2.1.19) ’((Wz Qf, 9)—Q(f, Wi g)), h)Lz(R%)
<Cellfller, o ceplglez @ llgzetee @)

(3) When s = 1/2, we have the same estimates as (2) with 2s — 1 replaced by any small k > 0.
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With Lemma 2.2, we immediately have the following improved upper bound estimate with
respect to the weight.

Corollary 2.5.
(1) When 0 < s < 1/2, we have

1QU 9l gy < CllS Iz

(R%)||9||Hm+2s (R3)>

max{l+~yF, (v+25)F} 1 (2547 F
provided that m < 0 and 0 < m + 2s.
(2) When 1/2 < s < 1, we have
2.1-2 m < m s
( 0) HQ(f’ g)HHl (]R%) - C”fHLrlnax{st—Hw*, (2s+w)+}(R§’) ”g”Hthzx{zswar, (2s+"1)+}(R%)’

provided that —1 < m < 0.
(3) When s = 1/2, we have the same form of estimate as (2.1.20) with 2s — 1 replaced by any
small k > 0.

In fact, this corollary is a direct consequence of Theorem 2.1 and Lemma 2.4.

Proof of Lemma 2.4 :
Proof of (1): the case 0 < s < 1/2. By using ®(|v/ — v}|) < (/)Y (v/)7", we have

(Wi Qs o) - W) b)
- ‘///b@f;g’(WZ’—W)hdvdv*da‘
< O [[[60110WVeiys D 1 Wi 1] dudo.do
= [[[b1610Ves D)1 (Wi )| 1| dedoedo

1/2
= C(// 10 [(Wigrs [l [(Wigr+ g)|2dvdv*d0)

<( [ o101 10Vecs 1.1 0P dvdo. o)

= CJl X JQ.

Clearly, one has
JE < C’Hf”Lller+ ||9||%l2+ . /82 b(cos ) 10| do < C’||fHLl1M+ ||g||ilg+ N
¥ Y

Next, by the regular change of variables v — v’, cf. [6, 12], we have

J3 = / Do(va, )| (Wi £l |1 [Pdv,de

where
Dy(v,v") = 2/ b(v-, v, 0) b(cos O(vs,v',0))do < C’/W/‘lw_l_zs sine) di
o\Y, - 52 COS2(0(U*,’U',U)/2) x, U,y O [ORS o )
and
v — v,
costp = T v =10/2, do = sinydipde.
Thus,

J3 <Clfllr, IRlZe,

and this, together with the estimate on .J;, gives (2.1.16).
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We now prove (2.1.17) by using (2.1.15) instead of (2.1.14). We have
(W Q. 9= QU Wig), )

L2(R3)

IN

0{ o108 10¥ise 21 107,09 8] .o
+ / / / b16] |(Wigs £ [(Wisiin, g)'| |1 dvdvsdo

[ 61107 Wi ' 8] .o
= Mi+ Mg+ Ms.
My, M3 can be estimated similarly to (2.1.16), and we have
Mo <Oy Nollzz Iz

My < Clfllee Nolsz_, Ibllze.

M can be estimated as follows. Firstly, we have

2
M2 =C? ( ][ o100 1107901 1 dvdv*da)
<c? [[[ i1V, )l (Wiss. ). Pdvde.do

x ///b|0|l+%|(ng)|\h’|2dvdv*da

=M1 x My .
Then, if [ — % —2s—1> —1, that is, [ > 2s + %, we have

2
Mia < Clgllee MIIze -

On the other hand, for Mj s we need to apply the singular change of variables v, — v'. The
Jacobian of this transform is, with k = (v — v.)/|v — v/,

Ove| 8 _ 8 B

w1 ] T s
Notice that this gives rise to an additional singularity in the angle # around 0. Actually, the
situation is even worse in the following sense. Recall that 6 is no longer legitimate polar angle. In

this case, the best choice of the pole is k" = (v' — v)/|v' — v| for which polar angle v defined by
cosy) = k" - o satisfies (cf. [6, Fig. 1])

T—0 . T
)= 5 do = sinydiydae, ¢5[1a5]~

This measure does not cancel any of the singularity of b(cos ), unlike the case in the usual polar
coordinates. Nevertheless, this singular change of variables yields

Miz=C [[[vlo1+ 410, 0) 1N dodv.ao

<c / Dy (0,0)|(Wy, g)| |1 [dvd,

(2.1.21) <1602 0€[0,7/2].

when [ > % + 2s because

. /2 .
Di(v,0) = / 0'+32b(cos f)do < c/ (g —ap) 22 2y <
S? w/4
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Therefore,
Mg < C'||9||Li+ e

Now the proof of (2.1.17) is completed by the embedding estimate for { > %
||9||LL+ < CHQHL;“Jr7+

Proof of (2): the case 1/2 < s < 1. Since we look for an upper bound estimate and € > 0, it
is sufficient to assume s > 1/2 for our purpose. Write

((Wz Q(f, 9) —Q(f, Wi g)), h L2 &) // B fig' (W] = W) h dvdv.do

= ///B FegW; — W) b/ dvdv.do = ///B fog (W — W) b dvdv.do
+///B f«(g—g") (W, — W))W dvdv.do = I + I5.
Taylor expansion gives
W, =W/ =VW,(v)(v—2") — /1(1 — VW (v + (v —0'))dr(v — )2,
so that i
I =— /01(1 —7) ///B FAVPW (U 4 7(v — ')} — ') ¢ B dvdv.dodr .

By using the symmetry property shown in Figure 1 ( see also Figure 2 below, and §3 in [39]), the
first order term in the Taylor expansion vanishes, that is,

///B g VW (") (v = ") B dvdv,do
= [ Lo (D= o) w2 a0 - vio

- VW (V) ¢'W dv'dv, = 0.

Here, we have used the notation that for a transformation v — v/, its inverse transformation is
denoted by v — ¥,(v') = v. And 01,09 are symmetric with respect to each other, in the sense

that ¥, (V') — v/ = —(Yg, (V) = V).

Vo, ('U’)

U

Yo, (V')

FIGURE 2. Symmetry of o1 and o9
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Furthermore, since

|{V2Wl(v' +7(v—v"))}Hv - v')2| CO?|v, — V' |P{W_a(v.) + Wi_o(v/ 4+ 7(v — V') — v,)}

<
< COHWi(vs) + Wi (v))} < CO*Wi (v, )Wy (v')

N
and ®(|v — v,|) < (V2(v' — v*>)7+ <27 <v*>’y+ (v'>7+, we get by the regular change of variables
v — v’ and the Schwartz inequality

(2.1.22) (LI < Cliflley, | @llallez @Ikl @s).-

In order to estimate I3, we shall apply the Littlewood-Paley decomposition {A;}52, which is
a dyadic decomposition in the Fourier variable (see also [17, 59, 5]),

Ajg(v) = (9251( )7 9= ZAng

and for m € R,
12 gllm ~ 2™ gll2, Nlglm ~ Y 25 ™Azl

Then we have the following decomposition
oo ol
I = Z/ / / B .V (259) (0 + 7(0 — ")) (0 — V') (Wy — W) I do}dvdv*)dT

+Z / B 1 A{(859)(0) ~ (550) () }(Ws — W) B do v,

QC
= Z I2J+I2J )
7=0

where

Qj:Qj(U,v*):{0682 o>1-2"%{y—v,)" 2}.

T

Note that if 1/2 < s < 1, then

(2.1.23) / b(cos ) 0*do =
Q

J

27 / sin @ b(cos 0)6%d6
{0€[0,7/2];5in(6/2) <277 (v—v.) '}

C2j(25—2) <U _ U*>2s_2,

IN

and

(2.1.24) / b(cos )0 do sin @ b(cos ) 6 d

27T/
{6€(0,7/2]; 5in(6/2)>2—7 (v—v.) =1}
< CQj(2571)<1) 7 v*>2371.

To estimate I. ., we need the change of variables

2,70
1+7 1-—
5 VT

The Jacobian of this transform is bounded from below uniformly in v,, o, 7, because

(2.1.25) voz=0v+71(v-0)= 7-(|v—v*|a—&—v*).

1+7 V — Vs
= |det(—=L k)| p— LU
‘e 2 + 2 ~o® ( \v—v*\>
(1+T 1—7 (1+7)3% 27 1—7 50

1+ k ‘: 9 7

} 7 2 |1+7 157 3
_ 3

>( +T) 27 1 T’:(I—FT) < 1

=798 17 17 23

23 T 2387
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Recall, cf. [6], that the cross-section B(v — vy, ) is assumed to be supported in 0 < 0 < 7/4.
Furthermore, we have

1+7 1-—
(v—v.) +

(2.1.26) |z — vi| = ‘ 7-|v—v*|a‘

14 7\2 1—7\2 1-72 1/2
( 2 >+( 2 )+ 2 7

7'2—1—(1—7' ) cos f‘

= [v =

= [v — v

f\v vl

which implies (v — v,)2*®(Jv — v,|) < C(2)2T7+ (v,)2T7+. Since
(v =) Wi = W) < COP*v — v P(Wim1(2) + Wig 1) < v — 0. PWim1(2)Weg -,
we have from (2.1.23) that for any € > 0

1
10 [ [ P10t Pl | Witz (Fu50) (0 — 002 e i

/ // / bO?|(Wic1s2s4s £)el [(Witi2s4+, (Volrig)) (2)]?

1/2
x (v — v*>2_25\d0> dvdv*> dT:|

1/2
[ I / b2 1+2s+w+f)<”—U*>228h/|2d0>dvdv*1

boaeriy @Dz ey Pl o),

< C2| flli

where we used the regular change of variables v — z defined by (2.1.25) and the regular change of
variables v — v’. The estimate (2.1.24) yields the same bound for I3 ;. Therefore, we obtain
(2.1.27) 2| < Cllfllzy,,,  @)llgllgzesie sy 1Pl L2 @s)-

1425

Estimates (2.1.22) and (2.1.27) together give the desired estimate (2.1.18).
For the convenience of the readers, we postpone the proof of (2.1.19) to the end of section 2.3.
And this completes the proof of Lemma 2.2 because (3) comes from (2) for the case s = 1/2 + k.

2.2. Coercivity estimates. We establish coercivity estimates of the Boltzmann collision opera-
tor. We will show that the angular singularity in the cross-section yields the sub-elliptic estimates
which are lower bounds of the collision operator, see [6]. Notice that we need precise weighted sub-
elliptic estimates as given in the following theorem. For more detailed explanations and notations,
interested readers can refer to [5, 39)].

Theorem 2.6. Assume that vy € R, 0<s<1. Let g > 0,20, g € Lrlnax{«ﬁ 5+ Llog L(R3).
Then there exists a constant Cy > 0 depending only on B(v—vy,0), ||g]| 11 and || 9]z 10g L5

max{y+, 29T}
and C > 0 depending on B(v— vy, 0) such that for any smooth function f € Hl/ (R3NL2, ,(R3),

yt/2
we have

221 ~(QUe 1) F) ) Z Ol Tl = Clslley el I, )

Remark 2.7. From the proof of the theorem, the constant Cy is seen to be an increasing function

of 191z, ||§||Z11 and ||§||Z}ogL where § = (v)~1g. If the function g depends continuously on a
1

parameter T € Z, then the constant C, depends on inf ez ||(v) Mg, |11, sup.cz |97 L 10g £ and

SUp, ez ||g||L3nax{’y+.27'y+}' In the later application, we take 7 = (t, x).



20 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Proof. Firstly, we have

(@a.£).5)= [ [ #=v.Dbleosb)g(o)f0){F0") = (0]
- % /R /S O(|v — v.|)b(cos O)g(va){ f(v')* = f(v)*}dodv.dv
- % ®(Jv — v.|)b(cos 0)g(v){f (V") — f(v)}2dodv.dv
RS Js2
=R1 —Ra.

For R4, according to the cancellation lemma, Corollary 2 of [6], we have
1
Ra= 5/ / O(Jv — va])b(cos ) g (v ){f (v")? = f(v)*}dodv.dv
RS Js?

L { < ') » —@(v—v*l)}b(cos@g(m)f(v)ﬂdvdadv*
R6 JS2 COb2 COS 2
=3[ Lo <|_>{ 130—1}b<cose>g<v*>f<v>2dvdadv*
R6 Js2 COS2 COS b
//{ ( |>—¢(|’U—U*|)}b(COSQ)g(U*)f(’U)Qd'UdUdU*
RS Js2 cos §

=Ri1 + Ria.

For the first term R1q, from 1 — cos® § < 3(1 — cos §) = 6sin® 4, it follows that
2
Ris < Clglur 191

because ® < 1 when « < 0. For the second term Rq2, we first note that the mean value theorem

gives
v — vl
¢>< 5 | = @(v - v.)
COS 5

1 |[v —vi] 9 21 2
— _ 71 7*21 1V U2 1~
(g~ Ul (P
1
< Cl—75 = D2(jv — v),
COS 5

2

where f < cos < a < 1. Similar to R11, we can obtain

2
Riz < CHQHL;r Hf||Lf/+/2

For the term Ro, we first note that
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Then, by using the fact that (a — b)? > a?/2 — b2, we have

1 / 2
- /R6 /gz D(|v — vi|)b(cos ) g(v){ f (V") — f(v)} dodv.dv

>C b(cos 0) 9(v )<v>'y{f(v’)—f(v)}2dodv*dv

RS Js2 (v
= cos ) L L3 £ — 7 f(v)Ydodv,dv
~c[ [ u 9>< >M{<> 70~ () f(0))dod.d
—c [ [ deost) 2 () 1) - (0 £0)

R6 JS2

+ (v)2 f(v') - <U/>%f(vl)}2dadv*dv

IO I ~ (0 £(0)Pdodvado

9(v:) 3 (v = (N2 F(v')V2dodu. dv

For the first term Ro;, by using Corollary 3 and Proposition 2 of [6], we have

g9(vs) % £(0)2dodv,du
Rov =i [ [ bleost) TE4w) 1) - (0% )} dodv.a
(222) >c [ iFanen©P] [ wé-o(F@0 - 7)) b
> CylWa o By = Clalus 1B,

where § = (v)~1"lg. Here C, is an increasing function of ||| 1, |\g|\;§ and ||§||Z%OgL, according to

the proof in the last part of [6] (see also Lemma 2.1 of [48]).
For the second term Rg2, note that for some 7 € (0, 1), we have

R
[2—~] _ Il
B e R U — v/ — v, | tan(0/2)

W4+rw—1")— v*>27

< Cw) T — v, tan(0/2)
(0,) 5= (') tan(0/2), if v >0,
= O{ (vs) tan(0/2), otZerwise.

Hence, we get

2
()7 — ()2 ne
RQQ*CQ/RG/S:) (cos 0)g(vs { <*>‘T| } f@Wdodv.dv

<G /]RG /82 b(cos 6) tan2(9/2)(v*)|2*7+|g(v*){<v’)%f(v’)}QdO’dU*dv
< C2||9||L|12M{+‘ ||f||2Lj+/

This completes the proof of Theorem 2.6.
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In the following analysis, we shall also need the following interpolation inequality between
weighted Sobolev spaces in v, see for instance [32, 39].

Lemma 2.8. Foranyk e RipeR,,§ >0,
(2-2-3) ||f|@1§(11§3) < C&“JCHHQ;CS(]R%)||f||H§+“(R5)'

2.3. Commutator estimates. We are now going to study the commutators of a family of pseudo-
differential operators with the Boltzmann collision operator. This is a key step in the regularity
analysis of weak solutions because it requires the mollifiers defined by pseudo-differential operators.
Below, we denote (-, -)r2(rs) by (-, -) for simplicity of notations, without any confusion.

Proposition 2.9. Let )\ € R and M (&) be a positive symbol of pseudo-differential operator in Sf‘ﬁo

of the form of M(€) = M(|£|?). Assume that for any ¢ > 0 there exists a constant C > 0 such that
for any s, 7 >0

(2.3.1) < il <c implies C7'< ﬁ <C.
T M(r)

Furthermore assume that M (&) satisfies

(2:3.2) (M (€)] = 19g M(©)] < CaM (€))7,

for any oo € N3. Then the followings hold.
(1) If0o<s<1/2, for any N > 0 there exists a Cy > 0 such that

(2.3.3) |(M(Dy)Q(f, 9) — Q(f, M(Dy)g), h)r2(s)|
< Ol ey (1M0lc2, o) + gl ey ) Il oy
(2) If1/2<s <1, for any N >0 and any € > 0 there exists a Cn . > 0 such that
(2.3.4) [(M(D)Q(f, 9) = Q(f, M(Dy)g), h)r2(es)|
< C’J\M“J"HL;2 ety + (R (|\Mg||H(2;s;jj1)+(Rg)) + ||9||H3;N(Rg))) 1 22 ) -

(3) If s =1/2, we have the same estimate as (2.5.4) with (2s + v — 1) replaced by (v + k) for
any small k > 0.

Proof : Firstly, set ®.(v) = ®(Jv — v.|) and write

(MD)Q ), 1) = (QUL M(DL)g), h)
_ / / Bl ~ v.l,0)f (02)g(0) (M B) (@) ~ (M) (v) ) dordv.do
RS Js2
_/ B(|u—v*|,a)f(v*)(Mg)(v)(W—W)dadv*du
RS Js2
= / / b(cos ) f (v [( +9) () (Mh)(v') —{M(®.9)}(v )h(U’)}dadv*dv
Re Js2
—l—/]RG /sﬁ b(cos@)f(v*){M(q)*g)}(v)(h(v’)—m)dodv*dv
_/ / b(cosH)f(v*){CD*(Mg)}(v)(W—W)dadv*dv
RS Js2
= // b(cos @) f (v [( L9) (V) (MR)(v') — {M(D.g) }(v )h(v’)}dadv*dv
Re Js2

+/]RG o b(COS e)f(’U*)([M, ‘I)*]g) (’U) (h(v/) _ h(’U))dO'dv*d'U
= I+4+7171.
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The above computation is justified with cutoff approximation, see the remark given after (2.1.4)
and also [39]. The first term Z can be rewritten by using Bobylev formula (see e.g. [6]) as

7= [ [ b o)) (M@ - MEN) F@ag(€h)e ¢ dodhe)de,
o Jia e

where

+ Ex[fo
£ = 5

Notice that in the case of Maxwellian molecule type cross section with v =0 i.e. ®(Jv —v.|) =1,
I7=0.

Since M'(|¢]2) = 26 - VM (€)/|€]? and |¢1] < [¢] < 2|¢T, it follows from (2.3.1) and (2.3.2) that
2

(2.3.5) (M) — M) <C

/ (|§| 7)

m<e [ s [, f o € ) sin® S M) F(@. (02) 7 0) (6] Q)| dedodo,
. 24 dord 1/2
<o [t sl [ [ bl opsin® SMENF@.(0) o) ) Pdsdodo. )

/|U* ’V+fq;*\//b‘€| sin f|h( )Pdedodo,) i

< Clfllns, (sup IM(D)® (0.) *g(0)12, ) Iz,

M(ET),

Sln

and
2

sin do < C < +00.

2

Thus,

where we have used Plancherel’s equality, the change of variables £ — &1 for which d¢ ~ d¢t
uniformly with respect to o, the estimate ®.(v,)~ 7+ < (v)?+. Then by using the expansion
formula of the pseudo-differential calculus

1
(2.3.6) [M(Dy), @.(v)]g= D> —Pui)M(Dy)g+ 7, (v, Dyiva)g,
1<|a|<Ny
with N7 > A, and the condition (2.3.2), we obtain
(23.7) Sup [ M (D). () g(0)lz, < C(IMgllzz, + Ilgllnx )-
Vi p
Hence,
(238) 171 < CU i, (1Mglaz, + llgll s )Blzs

We now turn to the term Z7Z. Firstly, set
F(v,vy) = [M, ®.]g(v),

and decompose

17 = / | beos 8 @) { PO/, v )h(0!) ~ F(o,0.) (o) bodu,do

s2
+ /RG /s2 b(cos G)f(v*)(F(v,v*) - F(v’,v*)>h(v’)dv*dvdg
=Ji + Jo.
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According to the cancellation lemma [6], we obtain

/RB | bleos 0){F(v’, v )R(') — F(v,v*)h(v)}dadv - (5 % {F( . U*)h})(v*),
where the convolution product is in v € R3, and in this case,

/2
S =2 / sin 0b(cos ) { - 1} a9
0

ot
cos3(6/2)

is a constant function. Consequently,
i = /R T (S {FC v} (0)dv, = 8 [ ) F @) dvds.
By (2.3.6) and (2.3.7), we get
(2.3.9) 1] SC/RS [f OllIF (vl L2 ][ll L2 dvs
<ONflluy, (1Mollzz, +Ilall - )l

To estimate the term J3, we need to consider the following two cases.

Case 1: 0 < s < 1/2 . Since the mean value theorem yields
1
F(v,v.) = F(v',v,) = (v—2') - / Vo (F(' +7(v =), v.)dr,
0

by noticing that
[v) — | = |[v — v|sin(0/2) = [v" — v.|tan(8/2),

we have

Jo| < /0 (/RXS b(cos 0)[v" — v||f ()[R ||(Vo F) (0 + (v — v’),v*)|dvdv*da)d7.

1/2
gc(/RGX82 b(cos 6))|9|<v*>7+|f(v*)||h(v’)|2dvdv*da>

1
x / ( / . bleos0)lfl(w.)7+ ()
::(jc]él X Jég.

v — v ’

<U*>7+

1/2
(Vo F) (v 4+ 7(v — "), v4) dvdv*da) dr

By the change of variables v — v’ for which dv ~ dv’ uniformly in v, € R3, 0 € S? (see [6]), we get
(2.3.10) T3 < Cllflle, 17
To estimate Jao, we apply the change of variables (2.1.25) and use (2.1.26). Setting

(v =)
<U*>’Y+

Pr(v) =

)

we get

1 2
J3 < C/o [/Rzn . b(cos 0)[0]{(v) | f(v)||* (2) (Vo F) (2, v4) dzdv*da} dr

< Cllfllzy, sup 1" () (Vo F) (v 122
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On the other hand, it follows from the expansion formula of pseudo-differential operators that,
with @, (v) = (1 + |v — v.|?)?/? we have for any N; € N

(Vo F)(v,0.) =V, [M, @.]g(v)

1 o o -
(2_3.11) = Z a {(V‘I)*(a))M( )(Dq,)g + q)*(a)M( )(DU)VUQ} + TN, (U,DU; v*)g

1<|a| <Ny
:FNI ('Ua Dv;v*)g(v) + 7;N1 (vaDmv*)g(U)a

where 7, is a pseudo-differential operator with symbol belonging to S’f:gN ! uniformly with respect
to v, € R3 (cf. [41]). Since

] (v —v) =l y
[ @a)| < Caw@ — Vx) < Calv)™,
by (2.3.2), we have for « # 0 that,
(M) €] < CaM(§)(€) 71 < CaM(©).
Hence
(2.3.12) @smmmjmm@meQfJ
Now, it follows from (2.3.9), (2.3.10), and (2.3.12) that
(2.3.13) 721 < 1 s, (1Mlsz, + lgll g )bl

holds when 0 < s < 1/2.
Case 2: 1/2 < s < 1. We now decompose Jo as follows:

Jy = /01 (/Rﬁxgz b(cos 0) f(va)h(v) (v — ") - (Vo F) (' + 7(v =), v*)dvdv*da>d7

= / ~ b(cos 0)f (v )h(v") (v = ") - (Vo F) (V' v,)dvdv,.do
R6 xS?

1
+/0 (/RXS b(cos 0) f (v )h(v')
(v=0") AV, F)V +7(v—0"),0s) = (Vo F) (v, 0.) } dvdv*da) dr
=J3+J3.

The essential feature of this decomposition is that J§ vanishes by symmetry as in the proof of
Lemma 2.4. Indeed, we have

5= [ )

{j£2b<ji:gi;:zt|oa)‘éwg?sgq)kdb(vﬁvﬁdo}o(VQIU(vﬂv*ﬁh/dv*
=0,

because of the symmetry in oy and oy in the sense that 1., (v') — v = — (s, (V') — v'), cf. Figure
2.
Now, by the change of variable v — z = v’ + 7(v — v) defined by (2.1.25), we consider

Ji(T) = /]1§6><S2 bf (v )h(v') (v — ") - {(VoF)(z,0) — (Vo F) (v, v4) }dodov.do.
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By recalling the expansion formula (2.3.11) of (V,F)(v, vs), we first consider
Jy(1,a)

= /l:zs o bf(U*)h(fU/)(U — ’Ul) . {(I)*(Q)M(Q)VUQ(Z) _ (p*(a)M(a)ng(vl)}d’Udv*dO'
(2.3.14) = /Rsxsz bf (v )h(V) {®a(a)(2) = Puiy (V') } (v —2') M@V, g(2)dvdv,do

+ / bf ()R (V)P (o) (V) (0 — ) - {M DV, g(2) — MYV, g(v")}dvdv,do
R6 xS2
:J21’O(7', Q) + Ji (1, ).

Notice that the case when |a| = 1 is the most difficult one, in the sense that M(*)(D,)V,, is a
pseudo-differential operator of order A with symbol bounded by C M(&) due to the assumption
(2.3.2). By writing (1) instead of (o) when |a| = 1, we have

|{<I>*(1)(z) — Q*(l)(v’)} v — v’|| < Clz —v,)76?,

which gives

1/2
(2.3.15) ‘ngaO(T, (1))‘ < (/ b92<U*>7+f(U*)||h(U/)|2dadvdU*)
RS xS2
2 (z=0v)7 2 1/2
(e 0 10 [ S0 V()]

<ClIfllz, 1IM gllzz.|Ihllz2-

In order to evaluate the term J3 (7, (1)), we take the same Littlewood-Paley partition of unity
{1 (&)} as in the proof of Lemma 2.4 and write

Ja (7, (1))
:/RG . bf(v*)h(q/)@*(l)(v/)(v ) {M(l)vvg(z) _ M(l)vvg(vl)}dvdv*da
= Jgo /Rﬁxgz b (04 )h(V") @, 1) (V) (v — ') - (g;(2) — g;(v")) dvdv.do

= Z j21,j(7—)’
=0

where g;(v) = 9, (D,)YM™M(D,)V,g(v). For each j we apply the following decomposition by using
2, introduced in the proof of Lemma 2.4 to have

jzl,j(T)

_ /01 (/R (/QVbf(v*)h(v/)q’*(l)(v/)(ﬂ_”/)

(z=0")Vgj(v' + s(z — v’))da) dvdv, )ds

+ ( b () (). 1) (0) (v — o) - (g5(2) — g;(0")) da) dvdv,
RS Q;

21,1 1,2
:J2,j (1) + J2,j (7).
By setting
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we have

s [ (], (/Q bl = 021 (0. ) () [€0) ()] Vi 0 >|da> dvdo, ) ds

< C/Ol ( RS (/Q] b(cos )67 (v — v.)> > (0,) P75 | (0,

(0], — 0?41

< ] |y Vo (e.)

da) dvdv*) ds

. , 1/2
< o2 / ( / bleos )62/ 229 (b — 1)~ (0. 2+ | F(0,) [ (") P ) s,
RS \JQ,

y /01 ((/R(J (/Q b(c089)022j(2725)<v7U*>2725<U*>(28+W71)+|f(’0*)|

A 2 1/2
’(v’ﬂs>(28“’*1)*23(2872“)ng(1};73) da)dvdv*> )ds

—ej 71,1 71,1
=027 Jy 51 (7) x 3 o(7).
By using the same change of variables as for J;; in the previous case, it follows from (2.1.23) that

(2.3.16) B <Cllfl,,, ., 1Al

(2547

Similarly, by taking the change of variables v — v/
to

(2.3.17) Ty o(1)? < ClIflle

(2s+v—1)4

7s as in the previous case again, (2.1.23) leads

(||Mg||H2b 1+5) +||g|| A—Np+2s— 1+€>,

(25+~/ 14

where we have used

1293520 g, (0)| 2, < O(IM gl e+ ol savaevve)-

(2s+y=1)4 Higshn 1)+

Hence, it follows from (2.3.16) and (2.3.17) that, for N3 > A4 2s — 1 4 &, we have

o (I gllzree ol )bl

(2s+v

(2.3.18) T3} (7)] < C27| f| s

(254~

On the other hand, for Jgf (1), note that

i) = / ( [ b)) e =) -gj<z>da> dvdo,
by the symmetry in Q5. We have
i@ | | / b(cos 0)6(v —v.)' =% (0,) B4 f(0,)]
RS

<Z _ v*>2$+'y—1

x [h(v)] Wﬂj(z)

dO’) dvdwv,

1/2

) . /
SC?’”(/ ( / b(cos 0)62/172) (v = 0,)1 72 (0. ) 21V (0,)| B0 Pdor ) dvd. )
R6 Q?

X
N
—~
N

/ b(cos 0)027 12 (v — w,) 172 (w) B f (0,

@s+7—1)4 gi(2s—14e) . (7| 1/2
(2) 2 9;(2)| do)dvdv,

Bllz2 (1M gllpgzese gl ),
(2s+~

4 (25+7—1)4

< C27|fll

(2s+v—1)4
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because of (2.1.24). This together with (2.3.15) and (2.3.18) yield
1
(2.3.19) I O < Ol (I gllgone, + oy | YWilee

It is easy to see that all other terms coming from Fy, (v, Dy;vs)g(v) in (2.3.11) have the same
upper bound estimates. Moreover, all the terms coming from 7y, (v, D,;vs)g(v) can be estimated
by

Cllfllz,.,, ., Nollioy , Thll:

(2547

Therefore, we finally obtain

| T2| = 72| < ClI I

(254~

o (I gllzree +llollpr )bl
In summary, when 1/2 < s < 1 we obtain instead of (2.3.13) that
(2str—1)4 (HMQHH(?;;;:E

By combining (2.3.8), (2.3.13) and (2.3.20), the proof of Proposition 2.9 is completed.

(2.3.20) 2] < CI| Iy llallpy Il

D4 (2s+7

The rest of this section is devoted to the proof (2.1.19) of Lemma 2.4.

Proof of (2.1.19) of Lemma 2.4.For m = 2s — 1 4+ > 0, we have with A = (1 — A,)'/?
(W@, 9) - QUf. Wag), h) = ((A""Q(f, 9) — Q(f, A~™g), Wid™h)
+ (WQ(F. A7g) = Q(F. Wik ™"g)), A™h)
+ ((QU. A7 Wig) = AT"Q(F. Wig)), A™h)
+ ((
=

(AT WQU, 9) = QU [A™™, Wi]g)), A™h)
D+(2)+6)+ )
It follows from (2.3.4) with M (§) = A™™ that
(W<l Fz lgllz> 1]l e

(2s+y—1)1 (2s+y—1)*t
(3 < Cllfll [Wigll 2 |7l

(2s+y—1)+F (2s+y—1)F

By means of (2.1.18), we have
@< O, Mol Whllse.
To estimate (4), we first note that
[A_m’ Wl] = Z (Wl)(a)(A_m)(a) + VVl—lR(vav)a
la]=1
where R is a pseudo-differential operator which belongs to S7 6”72. Write

W= ({A Q.9 - QU (A7) Vg }, (W), A"h)

lal=1

+ 30 ({m) @ (7™ V) = QU (W) (A7) )} amn)

la]=1
+ (R(v, D)QU,9), Wi 1 A7) + (QUf Wi 1 R(v, Dy)g), A™h)
(@) + () + () + (@).
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It follows from (2.1.1) that
(@ <l glla-=Pllmm, < Cllfllee -~ Mgllez Al
(d)] < CIQ(f, Wi—1Rg) |2 |kl e < CHfHLgW ||9||L2 7

l—14(y+2s)T

By exactly the same method as the one for (2.1.18), namely, by replacing W; by (W;)(®) which is
bounded by W;_,|, we have

<C A-m ()
IOl I(AT™) gl

I+2s—2+4~+

[Pl < Cllfll 2 1Pl

The estimation on (a) is the same as the argument in Proposition 2.9 by replacing M (D) by
(A=) except for the term corresponding to Z. Notice that Dg((e)™™) == M(@)(¢) is no longer
a function of |¢|2. Instead of (2.3.5), we only have

atzagt H9||Ll2+2s_2+7+

(2.3.21) M) — M@ (¢h) < C ehHm

Thus, we need to use the symmetry property as in the proof of Theorem 2.1. The term corre-

sponding to 7 is
b( )f(vs)
=

% (M@(€) = MO(E)) F(@.g)(E4)e € dodv.ho(€)ds,
where hg = (W;)(o)A™h. By letting

SlIl

F(’U,'U*) = WQ(”)? h(vvv*) =

we write

= [ . >1+V F(v.)

/ bz - o) (M() = M (%)) =€ P(e* v, )eiv€h(g, v.)dode bdv,
oo Jeo \5|

= [ (0 ()

Set _ ~
F(&?”*) = elv*éﬁ‘(&?”*)’ B(g’ v*) = ezv*gh(§7 U*)?

and write

L(vy) /R3 . b( m o (M( )(g) _ Mm)(f*))fﬁ(f*,v*)(ﬁ(g,v*) _

/1” //g G )

< (VM) 4 r(6 - §+>><§->2F<s+,u*>ﬁ<§+,mdads}dT
=LY (v.) + L2(vs).
By the same symmetry property as shown in Figure 1 in the proof of Theorem 2.1, we have
[ [0 o) (M) € (0)F(€F (e v.)dodg =0,
woJse 1€l
Then it follows from (2.3.21) that
sup| L' (v.)] < Cligllzz, hollz < Clgllzz, [1Bllp,

h(§*,v.)) dods
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and
sup|L2(v.)| < Cligllzz, Nhollzz < Cligliz  MIhllage,
Vs Y Y

whence we obtain
(0%
|Z% < C||f\|L1+WJr ||9||LiJr (2l e

In summary, we obtained the desired estimate (2.1.19).

3. REGULARIZING EFFECT

In this section, we will prove the regularizing effect on solutions to the non-cutoff Boltzmann
equation starting from f € H? (|71, To[ x 2xR2)). Actually this will be proved by using an induction
argument in the following subsections. In the first step, we will show the gain of regularity in the
variable v mainly by using the singularity in the cross-section, that is, the coercivity property in
(3.1.3). In the second step, we will apply the hypo-elliptic estimate obtained by a generalized
version of the uncertainty principle to show the gain of regularity in (z,t) variables. Then an
induction argument will lead to at least one order higher regularity in (z,t) variables. By using
the equation and an induction argument again, at least one order higher regularity can be obtained
in v variable. Therefore, the solution is shown to be in HE (|73, To[ X2 x R3) which by induction
leads to H®(JT1, To[ xQ x R3).

Let f € Hy(JT1, To[ xQ2 x R3)), for all I € N, be a (classical) solution of the Boltzmann equation
(1.1). We now want to prove the full regularity of ¢(¢)i(x)f for any smooth cutoff functions
p e Cgo(]TlvTQ[)a Y€ CSO(Q)

3.1. Initialization. Here and below, ¢ denotes a cutoff function satisfying ¢ € C5° and 0 < ¢ < 1.
Notation ¢1 CC ¢ stands for two cutoff functions such that ¢o = 1 on the support of ¢;.
Take the smooth cutoff functions ¢, pa2,¢3 € C§°(|T1,T2[) and v, ¥a,13 € CF(§2) such that

© CC ¢o CC 3 and ¥ CC ¥y CC 3. Set fi = o(t)Y(x)f, fo = wa(t)ha(x)f and f3 =
03(t)3(x)f. For a € N7, |a| < 5, define
9 =0%eO)Y(x)f) = 02, (p(t)(2) f) € LF(RT).

Firstly, the translation invariance of the collision operator with respect to the variable v implies
that (see [32, 37, 53] ), for the translation operation 75, in v by h, that we have

G(f, 9) = Q(Tnf, Thg)-

Then the Leibniz formula with respect to the ¢,z variables yields the following equation in a weak
sense

(311) g t+v - 6@39 = Q(an g) +G, (t7x7v) € R7v
where
(3.1.2) G - > cme(om s 0mh)

artas=a, 1<|ay|

0 (pb(@)f +v - Yal2)p(t)f) + 0% v - Do)t (@)S)
(4)+(B) +(O).

To prove the regularity of ¢ = 90%(¢(t)(x)f), the natural idea would be to use g as a test
function for equation (3.1.1). But at this point, g only belongs to L?(R”) so that it is only a
weak solution to equation (3.1.1). By using the upper bound estimate on @, we have Q(f2,g) €
L?(R? ,; H=?*(R3)). Thus, we need to choose the test functions at least in the space L?(R{ ,; H?*(R3)).
For this, we will use a mollification of g with respect to the variables (z, v) as a test function.

_|_
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For this purpose, let S € C§°(R) satisfy 0 < .S <1 and
S(ry=1, |71|<1; S(r)=0, |7]>2.
Then
Sx(D.)Sw(D,) = SV |D,2)S@ N D, [2) : B *(RS) — Hf*(RY),
is a regularization operator such that
(SN (D2)Sn(Dy) f) — fllz@sy — 0,  as N — oo.
Choose another cutoff function ¥ CC 1y CC ¥y and set
Py, = Y1(2)SN (D) Wi Sn(Dy).
Then we can take
g =P, (Pn1g) € CHR;HT™(R))

as a test function for the equation (3.1.1).

It follows by integration by parts on R” = R} x R3 x R? that

([SN(D’U)7 v] - VoSN (De)g, 1 (x)WiPn Q)LQ(W) =

Pr1Qf2.9). P o) (6:3) .00,
( N,lQ(f2 g) N, g L2(RT) + g L2(R7)
which implies that

(3.13) —(QUf2Pr.19), Proig) , = —(1Sn(D.), o] - VuSn(D2)g, va(@)WiPw, g)

L2(R7) L2(R7)

+(PN,1 Q(f2,9) —Q(f2, Pn,19), Pn,i 9)

By using (3.1.3), we can deduce the regularity of g from the coercivity property of the collision
operator on the left hand side and the upper bound estimate on the right hand side. The detailed
argument will be given in the next subsection.

L2(R7) + (G’ g) L2(R7)

3.2. Gain of regularity in v. In this subsection, we will prove a partial smoothing effect of the
cross-section on the weak solution g in the velocity variable v .

Proposition 3.1. Assume that 0 < s <1, vy € R. Let f € H}(|T1, To[ xQ x R3) be a solution of
the equation (1.1) for alll € N. Assume furthermore that

(3.2.1) ft,z,v) >0 and | f(t,z, -)||L1(R%) >0,
for all (t,x,v) €]T1, To[ xQ x R2. Then one has,
(3.2.2) Ay fi € HP(RT),

for any l € N, where f1 = () (x)f with ¢ € C§°(|T1,T2]), v € C=(Q).
Proof : Firstly, the local positive lower bound assumption (3.2.1) implies that

inf t,x,- =co > 0.
(t,z)€Esupp pxsupp Y1 172t )”LI(R%) 0

Thus, the coercivity estimate (2.2.1) in Theorem 2.6 gives that for any v € R, 0 < s < 1,

(@ Prso) Prag) == [ f (QUfa: Pvaa). Prag) , ., doit
( (f2, Pnug), Pnayg Lo reounn o Jeconnn i (f2, Pnig), Pnig L2(R3)
2// (COHW»):/QPN,Zg(tvxv')H%IS(Rf;)

R, JR3

—Cllfalt,z, )2 o [Prag e G ey )dodt

max{~yt,2—~

s 2 2
= Col|ASW, 2PN gll72 ey — Cllifall Lo s LLax{w,%w}(R%))”Wl g||Li+/2(R7)’

t,x?

where Cy depends on co,sup, ,, [|f2(¢, 7, )| 1 ms) and sup, , || f2(t, 2, )| L10g L(r2), see Remark 2.7.
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For the terms in (3.1.3), note first of all that
(3.2.3) [Sn(Dy), v] - Vo Sn(Dy) =272N(8")  (Dy) Dy - Vo Sn(Dg) + L*(RS ) — L*(RS,),

is a uniformly bounded operator so that

‘([SN(Dv)a v] - Vo SN(Dz)g, ¥1(x)Wi PNy g)

2
el = Cllf il mr)-

Hence, by using (3.1.3), we get, for [ > 3/2 + 2,

L2(RT)

The above constants C' > 0 are independent of N.
We complete the proof of Proposition 3.1 by estimating the last two terms in (3.2.4) through
the following three Lemmas.

(324) AWy 2Pragliagry < C{(1+ Ifallgass (Rﬁ))||f1||ifs<R7)+|(G, 7)
It t

+‘ (PNJ Q(f2,9) — Q(f2, Pnyyg), pNJg)

L2(R7)

Lemma 3.2. Assume 0 < s < 1,7 € R. Let f € H}(|Th, To[ xQ x R3), 1 > 3/2 + 2. Then, for
any o € N7, |a| < 5, we have, for any e > 0,

(3.2.5) ’(G 7) .

Proof : Firstly, we prove that

< Cs||f3||§1[5+4+hl(na7) + EHAZW'Y/QPNJgH%ﬁ(RZ’w,v)'

(3.2.6) G e AR} H 107 (R3)),

for any [ € N, where (25 — 1+ )" = max{2s — 1+ §,0} and § > 0 satisfying 2s — 1+ § < s. By
using the decomposition in (3.1.2), it is obvious that

(B) = 0° (e (@)f +v - ba(@)p(t)]) € LRRT),

and

I(B)ll2@r) < Cllf2llms, , ®7)-

Since [0, v - 0] is a differential operator of order |«|, we have
(ONL2@ry < Cllfal s @my)-

For the term (A), recall that a; + a2 = «, |a] <5 and |ag| < 5. In the following, we will apply
Theorem 2.1 with m =1 — § — 2s. We separate the discussion into two cases.

Case 1. If |a1] = 1,2, we have

(31 [P} 2
/]Rt A; ||Q(a fa, O fl)(tvxa')”Hllfs—%(R%)d:Edt

< C % fo(t, x, ) ||? 092 f1(t, 2z, )% dxdt
< Of for ety aolom el

< [05] 2 [65) . 2

< (o fQHL‘”(Rﬁ%Lllﬂstﬁ(Rf?)) /]Rt /R% 10° f1(t, @, )”Hllﬂzsﬂﬁ(m)dmdt
< C 2 2 .

- ”f2||H12:;//22++:+<23+w>+(R7)Hf1||Hz5+<2s+v>+(R7)
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Case 2. If |ay| > 3, then |as| < 2, it follows that

Lm0 M e

I+(2s4)t
< Cllo*fi]? - 0™ fo(t,z,-)||3 dzdt
- | leLOO(R?,I;Hzl+(is+w)+(R3)) /Rt /JRi 5% st )||L?+3/2+5+(2s+w>+(R§’) v
<

C 2 2 )
Wil sagsarsuo Vollms, 0w

By combining these two cases, we have proved (3.2.6).
Now if 2s — 1 < 0, then (3.2.6) implies that

‘ (G’ g) L2(R7)

On the other hand, if 0 < 2s — 1 and v < 0 (the case v > 0 is easier), then (3.2.6) implies that

‘ (G’ g) L2(R7)

< C||f3H§115+4+M(R7) IW_y /2PN, gHLZ(]sz;H%flJra(R%)),

S C||f3||§{l5+4+~,+ (R7)

< HGHL?(R‘,%J;H;;@S'/*;(Rg)||W7|7|/2PN,lgHLz(R‘t‘,w;H%*l*“(R%))

because 2s — 1 + § < s. Therefore, the proof of Lemma 3.2 is completed.

We now turn to the estimates of commutators between the mollification operators and the
collision operator, which are given in the following two lemmas.

Lemma 3.3. For any v € R, we have
(1) If 0 < s < 1/2, then for any suitable functions f and g with the following norms well defined,
one has

(3.2.7) 1S58 (D0)Q(f, 9) = QUf, Sn(Do)g)lz2ms) < Cllfller | (ms)

for some constant C independent of N.
(2) If 1/2 < s < 1, then for any 6 > 0 there exists a constant Cs > 0 such that

(3.2.8) SN (Dy)Q(f,9) — Q(f, Sn(Dy)g)ll2®s)y < Csll il

(2s+v—

9\|L3+(Rg),

1)+(R§)||g||H(2;;rljfl)+(R%) ;
and

3.29) [S8(D)Q(9) — QU Sx(Do)g)llmse—sesy < Collfllze, . opllgles

(2s+y—D+F (&)

(
(3) When s = 1/2, we have the same form of estimate as (3.2.8) with (2s + v — 1) replaced by
(v + k) for any small k > 0.

Before giving the proof of this lemma, notice that when v = 0 in the Maxwellian molecule
case, the following proof of Lemma 3.3 is similar to Lemma 3.1 in [48] (see also Lemma 5.1 in [8])
by using the Fourier transformation of collision operator. However, here we consider the case for
v €R.

Proof of Lemma 3.3 : The proof is a slight modification of the proof for Proposition 2.9. Set
M(I¢]) = Sn([¢]) = S272N[¢).
Then Sy € 5(1),0 uniformly. Even though it does not satisfy (2.3.2), we have
0°Sn(€])] < CaSn1(€]) < &>
with C,, independent of N € N. Thus, (2.3.3) implies (3.2.7) and (2.3.4) implies (3.2.8) respectively.
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For (3.2.9), note that with m = 2s — 1 4+ § we have
(SNQ(f.9) — Q(f. Sng),h) = (AT Q(f.9) — Q(f,A™™"g)), A" SN )
+ ((S8Q(f A7™g) = Q(f, A" Sng)). A™h)
+ ((Q(f, SNA™™g) — A™™Q(f, Sng)), A" h)
=(L) + (I2) + (I3).
By applying (2.3.4) with M (£) = (£)~™ to (I) and (I3), we obtain
I+ < Oles, Mallze Wbl
because Sy € Y uniformly. The same bound on (I5) follows from (3.2.8).

Notice that the case of s = 1/2 follows from the case of s = 1/2 + & for any positive k because
the main concern here is the upper bound. And this completes the proof of the lemma.

The following lemma is on the commutator of the collision opertor with mollifier in the = variable.

Lemma 3.4. Let 0 < s <1 and v,m € R. For any suitable functions f and h with the following
norms well defined, one has

(3.2.10) S8 (D2)Q(f, h) — Q(f, SN(Dz) M)llr2ws , rrm-20(r3))

< CZ?NHV:CfHLW(R;{z, L(lzsﬂﬁ(ﬂ&g))||h||L2(R;{m, HY L (R)

for a constant C independent of N.

Proof : Let us introduce Ky(z) = 23N §(2V2)2Vz. Note that Ky € L'(R3) uniformly with
respect to N. Then for any smooth function h, one has

((sxP0 @u - sxam) ), = [ [ [ k-

X (Q(wa(t,y + T(.’L‘ — y), ')7 2_Nh(t,y, ))’ B(t>$7 : >)L2(]R3)

By applying Theorem 2.1 with m — 2s, the right hand side of this equality can be estimated from
above by

C{sulIVaftta o, o

dtda;dy}dr

. i
/Rt /R (Rl 1127 Rt g, ) @@, 2o eyt

<2 Y|\Vafllpems it

(2s+v
which completes the proof of the lemma.

el sy @l e e,

We now apply (3.2.10) with h = Sy (D,)g and m = 1, we get
(3.2.11) IS8 (D2)Q(f, Sn(Dy)g) = Q(f, Sn(Dz)SN(Do)g)llr2rs ,, mi-2:(r3))
< CIVafllpeems ,, LéQSM)Jr(JRg))||9||L2(1R;{T, L2, (R
Here, we have used the fact that a mollification operator Sy (D,) in the v variable has the property

that
||2_NSN(Dv)g(t’$7 : )HH1

(2s4+)F

(R3) < CHg(t,x, ')HL2

otm+ R

where C' is a constant independent on N.

Now we are ready to complete the proof of Proposition 3.1.
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Completion of proof of Proposition 3.1.

We study now the commutator terms in (3.2.4). For this purpose, note that

(3.2.12) (PN,l Q(f2,9) — Q(f2, Pnug), Py 9)

L2(R7)

= (WD) QU 0) = Q2. S3(D2)g), SY(D) (@) WiPrsg) |,

+ (Sv(D2) QUf2: Sw (D) ) = Qfa: Sw(D2)Sn(Dy) 9), vr(@)WiPrag) |

+ (41 @Wi Q2 SN (Da)Sn(Dy) 9) = QUf2, Prag) Puag)
(1) +(2) +3).

Note that AS[y(x), Sn(D,)]Sn(D,) is an L? uniformly bounded operator with respect to the
parameter N for 0 < s < 1, and that [W;, Sy(D,)] is also a uniformly bounded operator from
L? to L} | with respect to the parameter N. The discussion on (3.2.12) can be divided into the
following two cases.

Case 1. 0 < s < 1/2. In this case, Lemma 3.3 implies that , for [ > max{4, (7 + 2s)"},
(W < Clifall s, L
And Lemma 3.4 implies that

2(RT)

L2(R7)

v o@D 9ll2@n) 9]l ey < Cllfslls, -

(DN = ClVafallpe@s,, o1, , @nlgllzeg,, o2, @)l9lleze) < Clfslls, -

tyax

As for the term (3), we use Lemma 2.4 to have

1B < Clifellpes Ll1+w++25(R%))”g”Ll2+ (@ lPy gl < C||f3||§1§l(R7).

42

Case 2. 1/2 < s < 1. By using (3.2.9), we have
(W] < Clifall e re

tx ) Tipytp2s—1
< el ASW, 2P gll7e ey + Ce||f3||%1l5+4+ L (R7)
.
We can use (3.2.11) to show that

L! (R3)) ||g||L12+W++25_1(R7) ||W7/2PN, 1 9||L2(R;{m , H2s—1+5(R3))

1(2)] < C||fo2||Loo(R;{m,Li++25(R§;))||Q||L2(Rg$,Li++2

S(R%))HWZ PN,lg||L2(R§I, H2s—1(R3))
242 AS 2
< CE||f3||H;jl(]R7) + el UW’Y/2PNvlg”L2(RZ,z,v)'

Then, (2.1.18) implies that

G < Clfallimat . th,o .., eI D2) S5 D) ol ooy IP19lszcer
442 s
< CEHf3||[9—[2l(R7)+€HAUW'\//2PN7ZgHiQ(RZ‘z«u).

In summary, we have obtained the following estimate for the second term on the right hand side
of (3.2.4)

’(PN,I Q(f2,9) = Q(f2, Pnig), Pn 9)

< Cellfslifs ry + el ASWo 2P, 1 gl ey -

L2(R7)

Finally, it holds that
(3.2.13) 1AW, )2 PN gl 72 @y < C||f3\|§{’f§l(R7)v

where the constants C, k, and k' are independent of N. Therefore, Proposition 3.1 is proved by
taking the limit N — oo.
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3.3. Gain of regularity in (¢,z). First of all, let us consider a transport equation in the form of
(3.3.1) fi +v-Vof =g¢e D R™,

where (t,z,v) € RI*7Hn = R27+1 In [9], by using a generalized uncertainty principle, we proved
the following hypo-elliptic estimate.

Lemma 3.5. Assume that g € H= (R2"t1), for some 0 < s’ < 1. Let f € L*(R2"t1) be a weak
solution of the transport equation (3.8.1) such that AS f € L2(R?*"*Y) for some 0 < s < 1. Then it
follows that

AS s(1—s )/(5+1)f c L2 (R2n+1) Af(l s s+1)f ceL? . (R2n+1)

=T
where Ay = (14 |D,|?)"/2.

As mentioned earlier, this hypo-elliptic estimate together with Proposition 3.1 are used to obtain
the partial regularity in the variable (¢,x). With this partial regularity in (¢,z), by applying
a Leibniz type formula for fractional derivatives, we will show some improved regularity in all
variables, v and (t,x). Then the hypo-elliptic estimate can be used again to get higher regularity
in the variable (¢, z). This procedure can be continued to obtain at least one order higher regularity
n (t,x) variable.

For the details, we first recall a Leibniz type formula for fractional derivatives with respect to
variable (t, z).

Lemma 3.6. Let 0 < A < 1. Then there exists a positive constant Cy # 0 such that for any
f e SMR"™), one has

h
(3.3.2) |Dy|Af(y) (|§| f OA/ Iy ‘h|n+y)\+ )dh'

Indeed, note that

f) = fy+h) o [ e iye [ L™
\thdh_ Rn f(&)e” / Ihl”“ dhdé’

R

while
&

1— e th€ \ 1 — e P
/ g /IR e

so that (3.3.2) follows from
3

]_—eiiuT
. et

which is a positive constant depending only on A and the dimension n, but independent from &.
Using this Lemma, we have the following Leibniz type formula,

33.3) Dy (F(n)gw)) = Ca N FY)g() —|{LT§:§ haly +h)
= gD, 1) + FW)Dy g (y) + C / (F&) — S+ ) gy +h) —9W)
R |R|rtA

We now turn to the analysis of the fractional derivative with respect to (¢, z) of the nonlinear
collision operator. Denote the difference with respect to (¢,z) by

it z,v) = f(t,x,v) — f((t,x) + h,v), he R;{I.
It follows that for the collision operator (where n =1+ 3),

B34IDe:PQU. 8) = Qs L. 0) + QU 1Disls) + C [ QU g
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This kind of decomposition will be used extensively below in order to get the partial regularity
with respect to the (¢,2) variable.

First of all, we have the following proposition on the gain of regularity in the variable (¢,x)
through the uncertainty principle.
Proposition 3.7. Under the hypothesis of Theorem 1.1, one has
(3.3.5) AP, f1 € HP(RT),

foranyl € N and 0 < sg = s((stls)).

Proof: In fact, for any [ € N, it follows from Proposition 3.1 that
ASW,g € LA(RT).
Then the upper bound estimation given by Corollary 2.5 with m = —s implies that
WiQ(f2, g) € L*(R{ 3 H*(R})).
On the other hand, Proposition 3.2 and (3.2.6) gives
WG € LR ;B +0(RY)).
By using (3.1.1), it follows that
(3.3.6) O(Wig) +v - 0:(Wig) = WiQ(f2, g9) + WG € H*(R").

Finally, by using Lemma 3.5 with s’ = s, we can conclude (3.3.5) and this completes the proof of
the proposition.

Therefore, under the hypothesis f € H? (|71, To[xQ x R2) for all I € N, it follows that for any
l € N we have
(3.3.7) A (p(t0p(@)f) € HIRT), A (p(t)b(a)f) € HP(RT).

We now improve this partial regularity in (¢, z) variable.

Proposition 3.8. Let 0 < A < 1. Suppose that f € H}(|T1, To[ xQ x R3) is a solution of the
equation (1.1) for alll € N. Furthermore, assume that for any cutoff functions @, ),

(3.3.8) A (v (@) f) € HYRT),  AQ.(e()v(2)f) € HY (RT).
Then, one has

(3.3.9) AAL L (p(t)(2)f) € H (RT),

for any l € N and any cutoff functions ¢, 1.

Proof: Set

gni = Pnig=11(2)Sn(Dy) Wi Sn(Dy)0* (p(t)y(z) f),
where o € N7, |a| < 5 and [ € N. Then (3.3.8) yields
IASgndll 2@ < CIAL () )2,
and
IR 29wl 2@ry < ClIALLO* (0 (8)(@) )]l L2 ey
where the constant C' is independent of N.
It follows that gy, satisfies the equation

(3.3.10) Oi(gni) +v - 0z (gny) = Q(f2, gni) + Gy

where Gy is given by

Gyy = i(x)W |:SN(D’U)) U} - VoSN(Dz)g + (PN,lQ(f2a 9) — Q(f, PN,lg))
+((0 Fa)1 () ) Wi S (D2) Sy (Du)g + Pt G,
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with G defined in (3.1.2).
We now choose |Dy | 3(z)| Dy .| gn, as a test function for equation (3.3.10). It follows that

(3.3.11) (v - (Ou1b2) ¢2($)|Dt,a;|’\9N7z>L2(R7)

:( 2(2)| Dy oM Q(f2, gni1) + G}y o) Dyl gNz)

L2(R7)
It is sufficient to prove that, for any [ € N,
(3.3.12) ASAY  Pnyg € LP(RT),

and is uniformly bounded with respect to N. In the rest of the proof, we use C' to denote a constant
independent of N.

We first consider the linear terms in (3.3.11). On the left hand side of (3.3.11), the hypothesis
(3.3.8) implies that

v (0uth) pey < Cl s PO (o000 Dl

For the linear terms in Gy, by using (3.2.3), one has

|12 (@) | Dy o |M {001 ()W, [Sn (D), v] - VuSn (D g}||L2(R7)
< OlllAea 0 ()9 (@) )l 2 ey

and
[92(2)| Do (v (V1) (2)) Wi Sy (D) S (D) | e,
< Cll|As 2P0 (p(8) () )]l 2

z+1(R7)'

Similarly, concerning the linear terms (B) and (C) in G, we have
H% |Dt 1|APNZ((B)+(C))HL2(R7) >~

For the nonlinear terms in (3.3.11), we shall use the formula (3.3.4).First of all, the coercivity
estimate (2.2.1) gives, as in (3.2.3), that

(3.3.13) —(Q(fz, ¥1(2)|De o gn ), 71}1(9C)|Dt,z|A9N,z)
> CO”ASW'y/le(x”Dt,ngN,l||2L2(R7)
—C| f2ll oo (s

On the other hand, the upper estimate of Theorem 2.1 with m = —s and a=—v/2>0 (the
case v > 0 is easier) gives,

‘(Q(IDt,azl/\f% Y1(x)gng), Yi(x)
<C‘||th| f2||L°° R: L1 (R3)) |WJ1(9U) v 2

Be | /24yt 425 [v1/2+~ ++2

< ellv1 (@) Deo PASW, j29 172 gr) + Celll Dea* foll o s

(¥ (@) f)llzz

l+1(R7) :

L2(R7)

t,zi ax{~y+,2—

’ )L2 (R7)
@) |[¢1(2)| Dy oM ASW, 29wl L2 27
(R3)) ||A59||2L2

7y -
\v\/2+w++25+z(R )

@ M/2+w++2s+4

For the cross term coming from the decomposition (3.3.4), by using again estimate (2.1.1) with
m = —s and « = |y|/2, we get

/ |h|_4_’\ Q((f2)h7 (9n,0)n), w%(x)\leAgN,z)
< [Callln ()| D2 M AW, j2gn, il 2y

/ Aol s o0 ol AS (annl e wrydh.

ol 2+ 2 (B Iv1/24~7+ +25

dh‘
L2 (]R7)
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Furthermore,

F I (0 T P L O

717247t +2s Iv1/2+7F+2s

/h| N (TSP
<

+4éA|‘f2||LW(R4 L

B8 Ty /24y 42s

(R7) dh

IN

@) 1A (gnv)nll 2 @&nydh

1
[vl/24~t+2s [vl/24+~t+2s

(R3)) ||A39N,l L2 (RT)

[v1/24~F +2s

IN

L2 (R7)dh

[vl/24+~t+2s

2 [Nl et IS
|h|<1

B8 Ty /24y 4 2s

HACK| foll oo . 1 @) 1AL gN 1]l L2 (®R7)-

1
[v]/2+~t+2s [vl/24~t+2s

Thus
L2 (@ (v, @I, 20n)

< 5||¢1($)|Dx|AAz9N,l||i2(1R7) +O€||At1,xf2||iw(]Rfym;L2 (Rg))HAfjgN,lHiz (R7)"

[v1/24vt 42544 [vl/24~vt+2s

dh‘
L2 (]R7)

Hence, the formula (3.3.4) yields
|(ID12Q(f2, v1(@)gn0) = QUDea o, 1 (@)gn)s ¥1() D)

< |t ()| Dea AW, a9 il T2 ey + CellAd o f2 |7 (g

toao

L2(R7)

(Rg))|\Af}9||i2

L2
[71/247F +25+1

[71/24yF +25+4

R7)"
In conclusion, we get from coercivity property (3.3.13) that
(3.3.14) [AS W, 231 ()| D o[ g 172 ey
<C|A ool T s 12 (R2))

62 Ty /24y T 425 +4 R

x (D1

g2, @)+ IA39125 @)

LIyl 24t +2s LHIyl/ 24T +2s

+ ‘(Dt,ﬂ’\(PN,zQ(f% 9) — Q(f, PN,lg))a ¢§($)|Dt,z|’\9N,z>L

2(R7)
+ ‘(lDt,ﬂir\PN,l (A)a wg(x”Dt,IV\gN,l)Lz(R?)
— (1) + (IT) + (TIT)..

For the term (II), since [|D;.|*, ¥1(x)] is a bounded operator, we can replace Py, by PN)l =
Wi Sn(D3)Sn (D). Again, the formula (3.3.4) yields

(1D (PrsQ(for 9) = Q(fo: Prag)), w3@)IDealona) |,
= ((pN,zQ(|Dt,m\’\f2, 9) — Q(IDe x| f2. Prnyg)), ¢%($)|Dt,m‘)\gN,l>

+((13N,1Q(f2, |D:2*9) — Q(fo, Py, D,|*g)), ¢§($)|Dt,m|’\gN,l)

L2(R7)

L2(R7)

w0 [ I (PraQ((ades ) = QU Pragn)). v @Dl o),

L2(R7)

As for (3.2.13), in the case when 1/2 < s < 1 (the other case when 0 < s < 1/2 is similar and
easier to handle), by applying Lemmas 2.4, 3.3 and 3.4, we have

(3.3.15) ‘((PN,ZQODL@’ *fa, 9) — Q(|Dt.x| fo, pN,zg)), ¢§($)|Dt,m|’\gN,l)

A
= C||A%; f2||LOO(R?’””’ L:w+2571>+

L2(R7)

A
(Rg))HgHL?(Rf)m, H?j;;:fl)+(mg))|\ Dtz 9||L§Z(R7)-
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By using (3.2.9) of Lemma 3.3, we can get, for 2s — 1+ § < s,

‘((pN,lQ(f% |Dt,x|)\g) —Q(fz, PN,l|Dt,x|/\g)), ¢§($)|Dt,x|/\9N,l)

< Ol Atz foll oo re

L2(R7)

2
Lz+(w+2s—1)+(

Ry, R3))

1)+ (R3 ))H ‘th| 9||L2

toa (+25,

2s—146 3
Hl+(7+2e 1)+ (R3))

< el AW, 291 (2)| Dy e[ gy all 72 ey
+Ce|| AL, fo | 2

t,x

A
Ll s/ovor(rrza—ny+ B )” Dtz g”L2 Rf ., L3, (R3))

and

M
L2(R7)

‘/|h|_4_A (ﬁN,zQ(fz,h, 9n) — Q(f2.ns Pnougn)). ¢§($)|Dm|AgN,l)

< Cl[ArgAs f2||L°°(]R ||g||L2(]R4 2SR (Rg))” ‘Dt,$|/\g”L12(R7)

el z+( +2s 1>+(]R t, +(v42s

)+(R7)” |Dt,:c| g”L?(RU'

< C||f2HH2+4/2+5 4 (R7) || vg”Ll+( 42s

143/245+(v+25—1)
Thus, we have

(ID) < el ASW, ot ()| De e[ gl 72 )
A (12K s 112
SR T S (N2 R R 1 ey

We now consider the last term (III) of (3.3.14). Recall that (A) stands for the nonlinear terms
from G given in (3.1.2). Precisely

M= X cme(m 0™h).

a1taz=a a17#0

By using (2.1.1) (we consider also only the case 1/2 < s < 1) and formula (3.3.4), we have

L2(R7)

(1D (@02, 0°211)). Prst@)IDl )

< CIA Wt (@) Do Pallan {||Q(IDeal 07 12 0% 1)

L2RY 25 H T 1) 2 (RE))

+|@(07 fo. ID1aP0o2 1)

L2(RE GHL o (B3))

+ [arr(om (n, 0% () an|

mmWWMMJ

We divide the discussion into two cases.
Case 1. |o;| = 1,2. Take m = —s. We have

|Q(1Deal o oy 02 11) ||

< O A0 follpoo s 0

L2(RY o H LS (RD))

L2(RE o3 H +1v1/2

1172 (RS)) HQ(aale’ |DM|Aaa2f>‘
&)l AJAZO° i 2

-
l+w++2s(R )

I+~t42s

< C||f2||HA++:/Zi/§2++j s @A fillmae, @),
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and

H /R h747AQ<3a1(f2)h» 3“2(f1)h)dh’

L2RE HS ,(RS))

<C/|h| i /\Haal(fé)h”L‘x’(Rt“ L, ++2S(JRg))HAiaw(f1)h||LZ2M++25(]R<7)dh
< CI O™ follpoe rs SLE e a RS))HAsaazvt,zfl)||L12+7++28(R7)
< C||f2||H2+4/2+6 (W)HA f1||H+ 4 (B

1+3/2+46+~yT 42

Case 2. || > 3. By the same argument as above, one has

|@(1Dealo fo, 02 11)) woy QO 2 1D 1)

L2(RY HS

111/2( L2(RY o3 H 2 (RD))

I+1vl1/2

< O A20% foll L2 es pe Lo lAY A0 fill L s 12 2 L, (ED)
S OGS, g, E AL 0012005
When |a;| = 3,4, we have
h747>\Q(8a1 , 02 )dh‘
I, (ol OGOy
—4—X « s §oz
<C [N olazcay ooy, o | A2 ey oz, ot
<C||Vm8a1f2”L2(Rm, . (Rs))HASa f1)HLoo(R”, 2 ian(R2)
< .
Olfallrg, s, @il 2020000 -
while when |ay| = |a| = 5, we have
BQ(0° (F2)ns (F1)n)dh|
H/R (F2)n, (1) L2(REHL 5 (RD)
< C/|h| O EInlle i, @A (FRl e iz, wapdh

< Ol 0% fall 2 (ms
< Clf2llas

14+3/24+6+~yT +2s

A 42e (R3)) ||Avvt Ifl)”LO"(R

(R7) ||f1 ”H;I:ff;M(W)’

il (R3))

tail L+ +42s

Thus, by the Cauchy-Schwarz inequality, we obtain

(I) < el AW, 201 (%) Dy o[ gl 72 ey + Ce(” Ai\,a:f3H;l{25[+ paent | ASfSHér;H ++7(]1{7))
Y 2l
Finally, we get from (3.3.14) that
|‘A5W7/2¢1($)|Dt,x|/\gN,l||2L2(R7) < C(” A?,wff}Hllc—Iél ®7) t | Af}f3||}§5 (R7)>'
klt~ytT 47 204yt 47

Therefore, we complete the proof for Proposition 3.8.

We are now ready to prove the following regularity result on the solution with respect to the
(t, ) variable.
Proposition 3.9. Under the hypothesis of Theorem 1.1, one has
(3.3.16) AT (o9 () f) € HP (RT),

for any i € N and some ¢ > 0.
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s(1—s)
(s+1)

Proof: Fix sg = . Then (3.3.7) and Proposition 3.8 with A = sg imply

ASA}%g € HP(RT).
It follows that,
(A% 9)e +v - 8:(Aj%9) = AiSQ(f2, 9) + AJSG € H(R).
By applying Lemma 3.5 with s’ = s, we can deduce that

AL () e(2) f) € HP (RT),

for any [ € N. If 259 < 1, by using Proposition 3.8 with A = 259 and Lemma 3.5 with s’ = s, we
have

A (e () f), AZL () (@) f) € HY (RT) = AJ (p(t)(x) f) € H (RT).
Choose ky € N such that
koso < 1, (k0+1)80:1+€>1.

Finally, (3.3.16) follows from (3.3.5) and Proposition 3.8 with A = kgsp by induction. And this
completes the proof of the proposition.

3.4. Proof of Theorem 1.1. In this subsection, we give the proof of Theorem 1.1 with the above
preparations. The proof is also based on an induction argument.

From Propositions 3.1 and 3.9, it follows that for any [ € N,
(3.4.1) Ay (e (@) f), Vi (0t (2)f) € H (RT).
These facts will be used to get the high order regularity with respect to the variable v.

Proposition 3.10. Let 0 < A < 1. Suppose that, for any cutoff functions ¢ € C§°(JT1,Tz|), ¥ €
C§°(Q) and alll € N,

(34.2) Ay (e (@)f), Va (p(t)e(x)f) € HY(RT).
Then, for any cutoff function and anyl € N,
(34.3) AT ()Y (@) f) € HP (RT).

Proof : Recall that g = 0%(¢(t)y(x)f) with |a| < 5 and
9N = Pnig=¢1(z)Sn(Dz) Wi Sn(Dy)g-
Choose A22gn; as a test function for equation (3.3.10). Then, one has

(3.4.4) ([A;\, v] - Oy gnys Af)\gNJ) (Aﬁ{Q(fz, gni) + Gl Af;\gN,l)

Since

L2(R7) - L2(RT)

[A), v] - 9. =AA)20, - O,

and A)~29, are bounded operators in L2, for any 0 < A < 1, we have, by using the hypothesis
(3.4.2) that

(3.4.5) ‘([A;\, v] - Ougnis AvAgN,l)

A
L2(®7) < C|A7 9||L12(R7)||V:r9”Ll2(R7)7

and when 1/2 <s < 1.

(3.4.6) ‘(A?;GNJ» AﬁgN,z) |A) 28140

< CHfQ”H?(]RUHAz);\gHLer &) gl L2 w7

L2(R7) yt+2s

< E||A5VVW/2Aﬁ9N,l||2L2(R7) + C€|‘f2||i1$(]R7)HA;}gHi’%,l(RU’
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By setting M = A} in Proposition 2.9, we have

3.4.7 ((AA 7, —Q(f, Mgny), A )

(3.4.7) 2Qf, gna) — Q(f, Ajgny), Agn, L2 @Y
< Cllfallawms, i, ey (M98 2s oz, @y + lonalFan ) 1A gvallie e
< CHfSHH?(RU||A1);\9H2Ll2+1(]1£7)’

when 0 < s < 1/2. Moreover when 1/2 < s < 1, we have

(3.4.8) ‘(AﬁQ(fzy gng) — Q(f2, AYgn ), AigN,z)

< C||f2HLOO(R;{,T;LgQH%lH(Rg))

L2(R7)

A+2s—1468
|AS

g (N TR [0 A | a3

2
7 (284
2k

< EHAsz/zA{}gN,l %2(R7) + Cs||f3||§1$(ne7)||A3QHLi,l(W)'

Now the coercivity estimate (2.2.1) gives,

(349) (@ Adgwa), Adows) , > CollAT, Mg

2
L2(R7)

—Cllfall e 0

A 2
SN 3) [AZgN. ”Liﬂz(R’)'

Thus, Proposition 3.10 is proved by the following estimate

(3.4.10) 1AW oAb gnalF e ry < © (Wl ary + 182 9135, r) )

where C' is independent on V.

We can now conclude the following regularity result with respect to the variable v.
Proposition 3.11. Under the hypothesis of Theorem 1.1, one has
(3.4.11) A= (p(t)h(a) f) € HY(RT),
for any l € N and some € > 0.
Again, this result follows by induction. Indeed, notice that there exists ky € N such that
kos < 1, (ko+1)s=1+¢e>1.
Then we get (3.4.11) from (3.2.2), Proposition 3.10 with A = kos and (3.4.10), by induction.

High order regularity by iterations

From Proposition 3.9 (more precisely (3.3.16)) and Proposition 3.11, we can now deduce that,
for any I € N, and any cutoff functions ¢(t) and ¥ (z),

p(t))(2)f € HP(RT).

The proof of Theorem 1.1 is then completed by induction.
Indeed, if f is a solution of Boltzmann equation satisfying the assumptions of Theorem 1.1,
then, when m > 5, we have

feHMTi, To[xQxR3), Vie N = feH" (T, Ta[xQxR3), vl e N,

Thus, the full regularity of Theorem 1.1 is obtained by induction from m = 5.
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4. EXISTENCE AND UNIQUENESS OF LOCAL SOLUTIONS

The local existence of solutions to the spatially inhomogeneous Boltzmann equation without
angular cutoff is so far not well studied. The strategy of proving the existence in this section is to
approximate the non-cutoff cross-section by a family of cutoff cross-sections and approximate the
Boltzmann equation by a sequence of iterative linear equations. Then by proving the existence
of solutions to these approximate linear equations and by obtaining a uniform estimate on these
solutions with respect to the cutoff parameter in some suitable weighted Sobolev space, the com-
pactness will lead to the convergence of the approximate solutions to the desired solution for the
original problem. One of the techniques used here is to introduce a transformation defined by the
time dependent Maxwellian developed previously in [54]. The purpose of this transformation is
to get an extra gain of one order higher weight in the velocity variable at the expense of the loss
of the decay in the time dependent Maxwellian. Moreover, the uniqueness of the solution is also
proved in some function space.

4.1. Modified Cauchy Problem. By taking x,p > 0, we set, for 0 <t < Ty = p/(2k),
[ (£) = pu(t, v) = e~ (P RDOF)

and

f=pt)g,  Tg,9) = ()" Q1n(t)g, px(t)g).
Then the Cauchy problem (1.6) is reduced to
. 2\, _ Tt
(41.1) { gt +v-Vag +r(1+v[*)g =T"(g,9),
glt=0 = go-

Our existence theorem can be stated as follows

Theorem 4.1. Assume that 0 < s < 1/2,v+2s <1 and k,p > 0. Let go € H(R), go > 0 for
somel >3 and k > 4. Then there exists T, €]0,To] such that the Cauchy problem (4.1.1) admits
a unique non-negative solution

g € C°([0,7.); HF(R®)) () L*(10, Tu[; Hfy1 (R)).

We shall prove Theorem 4.1 by cutoff approximations. For simplicity of notations, we will
denote p,(t) by u(t) without any confusion.

Recall that the cross-section is of the form of B(lv — v.|,cos0) = ®(Jv — v,|)b(cos ) which
satisfies (1.2) and (1.3). For 0 < € < < 1, we approximate (cutoff) the cross-section by

[ b(cosh), if |0] > 2e,
be(cos ) = { b(cose), if |0 < 2e.

Denote by I'(g, g) the collision operator corresponding to the above cutoff cross-section B, =
D (v — v, )be(cos 0).
By using the collisional energy conservation,

L2 + | = Jou? + [l

we have i, (t) = p=1(t) pl.(t) ' (t). Then for some suitable functions U, V, it holds that
REVE) = w0 [ Bl e o) (L OUK OV - OV )de.do
R, xS3

(4.1.2)

/ / B.(v = va, 0)pe(t) (ULV! = ULV )dvudo = To(U, V, p(t)
R3 xS2

QU V) + [ Bulo = o) (t) = )0V v
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Then we have the following formula coming from the Leibniz formula in the z variable and the

translation invariance property in the v variable. For any «, 3 € N3,
9%aPTL(U, V)

xr v g

= Z Cahoézﬁl B2,83 E(aalaﬁl aa2a§2‘/’ agglu'(t))
artas=a; B1+P2+B83=

= Qu(u(t)T, 200V + //R | gy T e @) = OV 0207V

+ Z Cay,az,61,82,8 S(aglagl ) 8;?2852‘/7 853u(t))
locz|+[B2|<|a+B]—1
(4.13) = A+ Ayt As.

Firstly, we give the following upper weighted estimate on the nonlinear collision operator with
cutoff.

Lemma 4.2. Let v € R.Then for anye > 0, k> 4,1 > 0, there exists C > 0 depending on €, k, 1
such that for any U,V belonging to HF (R)

p
(4.1.4) ITe@ Vg ey < ClUNax_ @l @gsys 0<t<To=

2K
Proof. To prove (4.1.4), put
g1 =030, hy = 03202V, pa(t) = 0 u(t),
To(g1, ha, ps(t) = T2F =17
Throughout this section, the estimates
p(tv), Jua(t)] = |0 ult, )| < Cpi e 70701t [0,T0], v € R,

will often be used.
Firstly, we compute 7_" as follows.

WTH < / / v — ) s (2, v*>|%uwzgn [(Wihs)'|dv,do

<C//‘,u3tv* o (VVl)

< C //| WH_nyrgl) (WH_,erhQ) | dv*da} s

where we have used |v — v,| = |v/ — v}| and W < 1. Since the change of variables

1/2 2 1/2
da // 2D (Wigh), (Wihy)'| dv*da]

(4.1.5) (v,v4,0) — (V0] 0"), o' =(v—uv.)/|v— v,

has a unit Jacobian, we get

IWT ey < C [ [[ [ 10V 0. Wi o) P doduds

= [ 1080 i it a0

< C/H Wiyt g)|1 72 ms)
If |ay + 31| < k/2, then we have

WV T |2 rs) < Cll (Wit gl poe m3; 02 (22)) | (Wit h2) | 22 rs )
< OWUNa,_, @lVIay @),

(Wigns ho) |72 s de.

because of the Sobolev embedding theorem and the fact k/2 4+ 3/2 < k when k& > 4. When
|ae + B2 < k/2, the proof is similar. This completes the proof of the lemma.
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4.2. Cutoff approximations. We now study the following Cauchy problem for the cutoff Boltz-
mann equation

. 2, _ Tt
(4.2.1) { g +v-Vag + k()9 =Ty, 9),
9li=0 = g0,
for which we shall obtain uniform estimates in weighted Sobolev spaces.

We first prove the existence of weak solutions to this cutoff Boltzmann equation.

Theorem 4.3. Assume that v < 1. Let k > 4,1 > 0, ¢ > 0 and Dy > 0. Then, there exists
T. €]0,To] such that for any non-negative initial data go satisfying

g0 € HF (R®), ll90ll e ey < Do,
the Cauchy problem (4.2.1) admits a unique non-negative solution g° having the property

g° € C°(|0,T-[; Hf (R%)), 9% oo qo, 72 1; 15 (o) < 2Do.

Moreover, this solution enjoys a moment gain in the sense that
(4.2.2) ¢ € T30, T.[; HE, (RY)).
Remark 4.4. (1) Notice that we do not assume go € Hf, | (RS) and the gain of the moment will
be essentially used below in the proof of uniform estimates to compensate the singularity in the
cross-section.
(2) The regularity of g° with respect to t variable follows directly from the equation (4.2.1).

(3) Fixz~y, k, 1 as in the theorem. Then T. is a function of € and Dy. In the following, when we
need to emphasize this dependency, we shall write

T= TE(‘DO)

(4) If v <0, we may take kK = 0. In this case, we do not have the moment gain (4.2.2), which is
anyway not needed.

Proof of Theorem 4.3. We prove the existence of non-negative solutions by successive ap-
proximation that preserves the non-negativity, which is defined by using the usual splitting of the
collision operator (4.1.2) into the the gain (+) and loss (-) terms,

I'*(g // — Vs, ) 1x(t) gih' dvdo,
R3 XS2
Ft _(97 h) - h‘L )

(g9) = // — Vs, O)p(t, v4) gudvido.
R3 XS2

Evidently, Lemma 4.2 applies to ¥, and in view of (1.2), the linear operator L. satisfies
(12.3) 10208 L.(9) (1,2, v)| < Cw) 02l oasy, ¢ € 0,To),

for a constant C' > 0 depending on ¢, because |u(t, v,)02 (v — v,)7| < C(v)7= 1Al
We now define a sequence of approximate solutions {g"},en by

0
9 =905
(424) atgn—i-l +- vxgn—&-l + I€<|U|>2gn+1 — F?—&-(gn’ gn) _ Fé’_(g", gn—H)7
9" i=0 = go-
Actually, in view of (4.2.3) we consider the mild form

(4.2.5) g"TH(t, x, v) :e_”(lth_vn(t’o)go(x —tv, v)

t
2 n
+/ e~ vD (t=s) =V (t’s)ljg"*'(g"7 g")(s,x — (t — s)v, v)ds,
0
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where
VT (t, s) = /t L.(g™) (s, — (t — s)v, v)ds.
First, we note from Lemma 4.2 that for any 7' €10, 1], To = p/(2k), go > 0, and
g" € L®(0,T[; Hf(R%),  g¢" >0,
the mild form (4.2.5) determines ¢g" ! in the function class
(1.2.6) g e IR0, T} HE L (RY), "0,

and solves (4.2.4). Thus g"*! exists and is non-negative, but appears to have a loss of weight
in the velocity variable. We shall now show that the term x(v)2¢g"*! in (4.2.4) not only recovers
this weight loss but also creates a higher moment. More precisely, we have the following lemma.
Introduce the space and norm by

X =L>()0,T[; HF(R®) NL2(J0,T[; Hfy,(R)),

191 = 912 o s sy + #1902 1. ey -
This norm depends on k, [, T, k, but we omit this dependence in the notation for simplicity.

Lemma 4.5. Assume that v < 1 and let k > 4,1 > 0, > 0. Then, there exist positive numbers
C1,Cy such that if p > 0, k > 0 and if

(427) go € Hlk(RG)v gn € LOO(]():TL Hlk(RG))a
with some T < Ty, the function gt given by (4.2.5) enjoys the properties

gn+1 c X,

(428) ‘|‘gn+1|”2 S 6C1KnT (

90021 gy + 9™ g0, 1 oy )
where K, is a positive constant depending on ||g" || L qo,r(; myge)) and k.
Proof. Put
K" =h2 =09%g".
Differentiation of equation (4.2.4) yields
O™ 4 v Vb 4 g (0)2h T = G — G + Go + G,
Gf =0°T™(¢", g"), Gy =0°Te(g", ¢"™),
Gy = —[0%, v V,]g",
Gy=—r Y C300()20° @A gn+L,
18]=1,2
Let x; € C§°(R?), j € N, be the cutoff function

i l<y,
W’)‘{ 0, Jl>j+1.
We remark that (4.2.6) does not necessarily imply W, 1h" T (t) € L%(RS), but x;Wi41h"t1(¢)
€ L?(R®) for all j € N. Hence, we can use Xj 2WES% (Dy)h™ T as a test function to get

(4.2.9) 2dt||SN( 2)XGWIh" 12 + k]| Sn (D) x; Wigr k"2
= (Gf — Gy + G2 + G3, Sn (Do) XGWPR™ ).
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Here and in what follows, the norm || || and inner product ( , ) are those of L*(RS ,) unless
otherwise stated. We shall evaluate the inner products on the right hand side. Observe that
Lemma 4.2 gives, for t € [0,T],

(GT, SR WiEh™™) ‘ - ‘ SNXiWie1 Gy Svx Wit k") | < CIWis G || [1Snx; Wis ™|
< OITe (g™ 9"y, o) 1S X Wi " |
< C||9”H12qk @&y ISnx Wi k|

K
=< *Ilg [ ZlISNXleHh”“HQ-

On the other hand, Lemma 4.2 is not enough to evaluate G| because G| contains g"*' which is

not known, at this moment, to have moments required by Lemma 4.2. However, this obstacle is
only superficial. Observe that

Gi= > Carpmas(079"7) (00 L0 gM).
(a1,p1)+az=a
Define,
Hi(9) =Y Ix;Wi0°gl?,

la| <k
and write H'; = H})(t) = Hj(gn(t)). By recalling (4.2.3), we get

G SAWI ] € 3 Cos s 0 I Wi 07267 0247 Sy, W™
(a1,81)+az=«
< CHgn”H’C(RG)H (Hﬂ;rl)l/z 1SN X Wi k™|

n K n
< 7”9 ‘lHk(RG)H I+ ZHSNXJ'VVH-Ih +1||2-

Here C,C’ are positive constants independent of x.
The estimate on the remaining two inner products are more straightforward and can be given
as follows.

(G2 + Gs, S?inwzzhnH)’ < ClxiWi1 (G2 + Ga)|| [|Snx; Wik B |

(/‘f+ 1)?

1/2 K
< Clr+ D(HSF) T 1Sn0GWish™ | < OS5 I+ 2 S Wi b 2

The constants C, C" are independent of ¢ and x.

Putting together all the estimates obtained above in (4.2.9) yields

1d
2 dt

Summing up estimates for "1 = A2t over |a| < k then yields,

1 n
||SNX]Wlhn+1H +*||SNXJWZ+1hn+1||2 <CW{’£+ (1+||g ”Hk RG))}H +1 *”9 HHk (RG)*

d C
S Hia(Sng™ ) 4 kHja(Sn g™ < CLER Hja(9") + : g™ ez s

where

Kp =r+— <||9 1o o, 15 (Royy T 1)
and C; > 0 is a constant independent of €,k while C5 is independent of k but depends on €. By
integrating the above estimate over [0, ] and taking the limit N — oo, we get

O 4 [ G

t t
C.
SH}-ffl(O)wLClKn/O H;jl(T)dwrf/o Hgn(r)ngﬂw)dr, teo,T],
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which gives a Gronwall type inequality

t
(4.2.10) H;fjl“(t)Jrn/O O =TI gkl (7)dr

C t
< O H T 0) + =2 /0 e g™ ()| eydr, £ € 10,7,

for all j € N. Since
HIE(0) < [lgoll3p

and 1 < eCEn(t=7) < eC1Knt 1 (4.2.10) gives

Hj’.fl*l(t)—i—m/ HIEL (r)dr < e“Fn t{||g [ +—/ g™ () 5z sy } te0,7].

Since the right hand side is independent of j, we see that {x;0%¢" " };en, |a| < k is weakly*
compact in L>(]0,T[; L7 (R®)) and weakly compact in L*(]0,T'[; L7, (R®)). Take a convergent
subsequence. Apparently, its limit is A"*1(¢). This is true for all |a| < k so that we can now
conclude that

g"* € X = L=(0,T[; Hf (R®)) N L*(10,T; Hfy, (RY)),
and by Fatou’s theorem,

n+1H|2

ll fsggwmfmwmm+mggwmﬁwumm

C1Knp
<Ok T(“QOHHk + —l9" I aqo, T[H"OR"))

Now the proof of Lemma 4.5 is completed.

We are now ready to prove the convergence of {¢"},en. Fix k > 0, let Dg, go be as in Theorem
4.3 and introduce an induction hypothesis

(4.2.11) 19" | L qo.7(; sk (RE)) < 2Do-

for some T €10, Tp]. Notice that the factor 2 can be any number > 1.

(4.2.11) is true for n = 0 due to (4.2.7). Suppose that this is true for some n > 0. We shall
determine T independent of n. A possible choice is given by
2Dy + 1

)

C1KoT 2402
(4.2.12) eV1hot =2, TD: =1 where Ko=r+

K
or

T—mind 1082 F
N C1Ko' 24CeD2 |-
In fact, (4.2.8) and (4.2.11) yield that g"** € X and

&

C
g™ 112 < e (ligol3s oy + —Tl9™ |12 go.11s e

< eCrKoT (Dg L& T24D0) < 4D2.
That is, the induction hypothesis (4.2.11) is fulfilled for n 4 1, and hence holds for all n.
For the convergence, set w™ = g"(t) — g"~1(t), for which (4.2.4) leads to

D v Vow (o) 2wt = TEF (", ") + T (g, w),
—Te™(w", g ™) =T~ (g" 7, wth),
w”+1|t:0 = 0
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By the same computation as used for (4.2.9), but more directly since we can now use test functions
as Sy (Dy)? W2 w1, we get

n 1 n n
([l < CZQCIKOTET{HQ H”Qoo(]o,T[; mFRe)) T llg ||i°°(]O,T[; HF(RS))

N

n—1(2 n||2
10" W oot 2oy 10 o7 oy

with the same constants Cy,Cy and Ky as above. Then, (4.2.11) and (4.2.12) give
g™+t —g"[|I* < 2*Co DR~ T g™ — gn_1||2L°°(]0,T[; HF(RS))"

Finally, choose T' smaller if necessary so that

21CyDARTIT <

el

Then, we have proved that for any n > 1,
1 _
(4.2.13) |||9"+1—g"|||§§ g™ = g™ HI|-

Consequently, {g"} is a convergence sequence in X, and the limit
g° € X,

is therefore a non-negative solution of the Cauchy problem (4.2.1). The estimate (4.2.13) also
implie the uniqueness of solutions.
By means of the mild form (4.2.5), it can be proved also that for each n,

g" € C°([0,T]; HF (R®))

and hence so is the limit g°. The non-negativity of g follows because g™ > 0. Now the proof of
Theorem 4.3 is completed.

4.3. Uniform estimate. We now prove the existence of solutions for the Cauchy problem (4.1.1)
by the convergence of approximation sequence {¢°} as ¢ — 0. The first step is to prove the
uniform boundedness of this approximation sequence. Below, the constant C' are various constants
independent of € > 0.

Theorem 4.6. Assume that 0 < s < 1/2, v+ 2s < 1. Let go € HF(R®),g0 > 0 for some
k>4, 1> 3. Then there exists T, €]0,Ty] depending only on lg0l| % and independent of € such
that if

(4.3.1) gF € CO0, ) HF(RS) N L2(0,T.[; Hf,(RY),
is a non-negative solution of the Cauchy problem (4.2.1), then it holds that
(4.3.2) 1951 e qo,m s 11 my) < 2[1901] e (re) -

In the following, p > 0, k > 0 are fixed. Furthermore, recall Ty = p/(2k). We start with a
solution ¢g° subject to (4.3.1) for some T €]0,Ty]. For a € N° |a| < k, the differentiation of the
equation (4.2.1) implies

(4.3.3) 0;(0%¢%) +v - V4(0%9°) + k(v)2(0%g°) = 0°TL(¢%, ¢°) — [0, v - V.]g° — k[0, (v)?]g°.
Since 9%¢° only belongs to L?, now as in Section 3, we take,

PR Pn,1(0%g%)
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as a test function in (4.3.3), where | > 3 and Py, = Sy (Dy)Sn(Dy) W, (we do not need the cutoff
functions <p 1/) here). Then we have

(434) 5 dt IIPN 1(0%97) (DI roy + KW Pr,1(8%9°) (8) 172 o)
A([Sn (D), (W3 (0°9°), Sx (D) Pa.i(9%9))
= (A1 + Ao+ As+ Ay + As, Py Pn,1(0%9°))
where Ay, A, Az are defined in (4.1.3) with U =V = g and
Ag=—[0% v -V, As=-r . Cz00(v)20° 0Py

L2(RS)

L2(RG) i

1B]=1,2
We have firstly,
(435) ‘(A47 P]t],lPN,l(aagEDLz(Re) < CHgE(t)H%—IIF(RGV
and
* o K
(4.3.6) (A5, PR Pt(0%0) ooy | < CRllg? () s oy + 9" (1 oy

We also have

(4.3.7)

A(1S3(DL), ()IW5 (0°9°), S (D2)Py.(0°97))

L2(RS)
Ky e 2
< C“”Q ( )”Hk (RS) ZHQ (t)HHl’ﬁrl(RG)'
We now study the term A; by using the non-negativity of g° and the coercivity of collision operators.

Proposition 4.7. Assume that 0 < s < 1/2, v € R. There exists C > 0 independent of € such
that for any o € NO |a| <k, k> 4,1> 3,

(43.8) (A1 PP t0°9°)) sy < Cllg™ (0o 1970 s e
forany 0 <t <T <Ty.
Proof : By setting h = 0%¢°, we have,

(Al’ PX/’ZPN’Z}L)H(RS) - (PN’IQE(“QE’ h), (PN’lh))
= (Qa (1", (Pn,ih)), (PN,lh))LQ(RG)

+(Pr,1Q (1(H)g . B) = Qu(u(t)g", (Pw.ih)), (Py,ih))

L2(RS)

L?(RS)
= B + Bs.
Since p(t) g°(t, , v) > 0, we have, in the same way as Theorem 2.6 with the cancellation lemma,
5= 5[/ B.(v— v.. 0) (u(t) ¢°). (P, ih) — (Pvih)) dv.dodvda
R3 XR3 xRS xS2Z

3 / / / / B =0 0) (1) 9. {((pN,lhy)Q — (Pw.1h)”} dv.dodvda

1 e N2 2
< 3 B.(v — vy, o) ((t) g°)« {((PN,lh) ) — (Pn,1h) }dv*dadvdx
RS xR3 xR3 xS2
: C/// (1(t) g°). (v = 0.)7" (P, ih)*dvdv, da
R3 xR3 <R3
< W () e ) (W) eI Wi B0 s,
< ®s . t€[0,T]

Clig* @l msr2+o e, )9 Ollmp @, ) g™ Ollar

++
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where we used the fact that b:(cos @) < b(cos6).
By putting Sy = Sy(D..) Sy = Sn(D,), we decompose

By = (SNSN{Wle (1(t)g", h) = Q= (p(t)g", (Wlh))}’ (PN’lh))LZ(RG)
+ (v { v Qe (ut)g®, (Wih)) = Q- (u(t)g®, Sw(Wi) }, (Pn.uh))

+ (SNQE (1(t)g®, (SNWih)) — Q= (u(t)g%, Sn(SnWih)), (PN,zh))
= By + Bay + Ba3.
By Lemma 2.4, we get

L2(RS)

L2(R6)

[Bor| = \({wlczs (u(t)g°, ) = Q= (u(t)g®, (Wih)) }, (S Sx Py.ih))

L2(RS)
< Clu®)g" Ol oo sy, @) /Rs Wi+ hllz2®e) | Pn, 1| 2 rs) d
< Cllg* =@y z2@an 19" Ol g oy 9" Ol o)

< C||95(t)||§1;v(n§6)||98(t)||H;v+7+(R6)» telo, Tl

It follows from Lemma 3.3 that

1/2
| Baz| < </R$ 1SN Q= (u()g®, (Wih)) — Q=(u(t)g", SN(th))II%ng)dx) [ Pn, 1hll L2 (o)

< Cllu@)g™ Ol oe ;o1 , @) Wi+ hll 22 @) 97 ()l (ee)
< C||96(t)||§1;v(]1@6)HQE(t)HHI{:w(RG)» telo, Tl
Lemma 3.4 with m = 2s yields
|Bas| < CISnQ(u(t)g®, (SnWih)) — Q(u(t)g®, S (SNWih) )|l r2rs, r2(ray)|Pn, thll 2 ey
< Cllu(t)Vagllpooms, L225+W>+(]R%))||(2_N‘§N(Wlh)”L2(R§, mE

< Cllg O lp o lg” Ollzs,_ oy, €10, T].

Combining the above estimates proves Proposition 4.7.

®2)) 1PN, bl L2 (o)

For the term A and As, we prove the following proposition.

Proposition 4.8. Assume that 0 < s < 1/2, v+ 2s < 1. Then, for any 6 > 0, there exists C >0
independent of € > 0 such that for any o € N |a| <k, k >4,1> 3,

* o 2
(39 (Aat A, P Pra(0°6%) gy < o Ol Olle o,

fort e |0, T).
Proof. By putting h = 8%¢g° and h = WfQP]’{mPN, 1(0%g°) , we get

‘ (Az, W2h

) 2 //// B (v = vy, 0)(pa(t) — 1l () (g°) L1 (WD) dv.dodvda
L2(RS) R? xR3 xR3_ x52

<1//] B(v v, 0)ea(t) = (0] 1(g°)4 [(Wih) (WiF) v dordud
R3 xRS xR3 xS2

] B(o = 0., 0) (2 (8) — i, (8))] 1), [ Wi — W] W (Wik)|dv, dordvda
R3 xRS xRS xS2
=11+ I.
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To estimate I;, we notice that
(4.3.10) |u(t,ve) — p(t,vl)] < Clo, — vl |* < COMo—v. |t < COMo' =LY, A e0,1], t € [0, Ty,

which is elementary for A = 0,1 and is obtained for general A € (0,1) by interpolation. Since
v+ 2s < 1 is assumed in the proposition, there is A € (0,1) such that A > 2s,v + X < 1. By the
manipulation on the primed and non-primed variables ( see (4.1.5) ) we have

= C//// (of — )N G225 (g7 | |(WikY| |(Wih)|do. dodudz
R3 ><R3 ><1R3 ><S2

<C/// 92— 25+A|(W(,Y+)\ +9°) / (Wit (42 + R)(Wih )|dv}dv*dada:
RS xRS xS2

< Cllg* () oo (rs; Ll s (R anllg (Ol x mey ll9° ()| s
< Cllg°(t )||H;c(Rs)||g ( )”H" (RS)>

I+(yv+2) T

6
v+ B

for I > (v 4+ A)* + 3/2. In the third inequality we have used again the fact that the Jacobian of
changing of variable v — v’ is bounded.
Using (2.1.14) gives

r<cf // e PO ) LI, (VI ORI o

—CJ1—|-J2)

By the Schwarz inequality and the Sobolev inclusion, we have

n=cf[[ 0120, ()] (Wi ) (Wi h) (Wil o dordoda
RZ xRS xRS xS2

—1-2s 2 Z\|2 1/2
=¢ (/// 0 s (8) 7| (Wih)| dvdv*da>
RS R3 xR3 xS2
1/2
) (/// 9_1_25|<Wl+v+96);(VVl+»y+h)'|2dvdv*d0) dx
R3xR3 xSZ

< Cl|pll 2 rs) /3 IWih(2) L2 @3 Wiy 0% (@) 22 23) Wiy s () || L2 3 die

(RS) ||sz~l||L2(R6)

< Cllg° || oo (r3 ;22 (m3
< Cllg* ||Hl’v+ +(R6)||96||H{“(R6)'
v

On the other hand, again by the manipulation on the primed and non-primed variables,

rec|[ff 012 (U Wiy 97, (Wi s Y (Wih) dv. dordvda
R3 xR3 xR3 xS2

L S T R Y ML U
R3 xRS xS2

< Ol &)W 6° e R0 (23) Wi+ Bl 22 (o [| Wi 2 g0
< C”gsH?—IZk(RG)||gs||Hlk+_Y+(]R6)
Here, we have used W,.,+p/2(t) < C.
We consider now the term Asz. For any o € N6, |a| < k, k >4, [ > 3, denote
hl — 8&196’ h2 — aoéng,
where
artas <o ag<a.
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We shall compute

(b b i WoR) = ([ B0 = ) )W) dv. doduds
3 xR3 xRS xS2

+//// B. (jih1), (Wy — W}) By (Wih)dv.dodvde
R3 xR3 xR3 xS2
+ (Qu(hy, (Wiha)), Wih)

For the last term, by Theorem 2.1 with m = 2s < 1, there exists C' > 0 independent of ¢ such that
for |ag| <|a|—1 and § > 0,

1Qe (it (Wihs)) 2 me) < / st 2, I

L2(RS)

s)+(R%)H(Wlh2)(t’ z, ')||H2b+2 )+(1R3)dx

< CHMhl(t)”LOO(R 3/2+( F2s)t 45 (R%))H(I/Vlhz)( )||L2(R3§ Hf;:+2s)+(R%)) ’ |a1| <2
- CV”,Lth(t)“LQ(]R3 L2/ +(w+2s)++5(R’3’))”(VVlh2)( )”200 (R3, H(2~j+zs)+ (R3)) > |Oél| > 2,

C||h1(t)||?{3/2+5(]1§§; Lz(Rs))”(Wth)(t)”iz(R& H<25+2 )+(R3)) ) |O‘1| <2
< x v x? v s v
< CHM(ﬂ”%z(Rg; L2(Rg))H(Wlh2)(t)“?{3/2+6(ﬂgg; HE L (R) lag| > 2,

vy £
< IOy o IO B gy k2433425 1> (14257 +3/2
Y+2s

The estimation on the first term is similar to (As, leﬁ) r2(rs) by taking into account the same
manipulation concerning cs. The estimation for the second term is also similar to the part Jy of
I as above. Hence, we have obtained

<A3’ Wﬁl) L2(RS)

This completes the proof of Proposition 4.8.

(4.3.11)

< Ol O gs o lg" DL,z

If (4 3.5), (4.3.6), (4.3.7), (4.3.8) and (4.3.9) are combined, then it follows from (4.3.4) that
o € K g
L P (84Dl + W1 P (0O s — S0 DI ae

<C (119 (1) 245 o) + C2lg™ ()2 oyl (1) =) -

I+ (y+2s+5)F

Take the sum over |a| < k, integrate from 0 to ¢ € [0,7] and make N — oco. Then there exists
C1,Cs > 0 independent of € > 0 such that , for any 6 > 0 and ¢ € [0,T],

(4.3.12)

t
[PRG] [ +n/0 9= (), , ey

t
< 16" O + Ot [ Io" (g poyr + Co / 197 () 20 oyl 97 ()

Remark 4.9. We give here some technical reasons about the choice of the time dependent dis-
tribution wu(t) as moment control in the equation (4.1.1). If we take k = 0 in the definition of
Mazwellian distribution u(t), the above computation gives also (4.3.12) without the second term
on the left hand side because k = 0. But the upper bound estimate, by using Theorem 2.1, always
gives the last term in (4.3.12) with the factor ||g°(t)|| g+ ®ey- If y+2s <0, there is no loss

I+ (y+28)t+5

of moment, we can get (4.3.13) with k = 0. If 0 < y+2s < 1, we choose § such that y+2s+6 <1
so the second term on left hand side absorbs the last term in (4.3.12) because

6 dr.
I+ (v+2s +6>+(R )

Hga(t)HHZ’C+M+23+5)+(R6) <|lg°(t )||Hk L(RS):
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In conclusion, the choice of u(t) is mainly for the hard potential.

t

Completion of proof of Theorem 4.6. Set X(t) = Hgs(t)H?{lk(RG) and F(t) = [/ X(r)(1+

X (1))dr. Since v+ 2s < 1, by (4.3.12) there exists a C' > 0 independent of € > 0 such that
t
K g
(4.3.13) X() + 5/0 llg (T)||§{f+1(RG)dT < X(0) + CF(t).

Noticing that F’(t) < (X(0) + CF(t))(1 4+ X(0) + CF(t)), we have

2 Ct
||gO||H;€(R6)e

1970k o = 1= (o= 1) ooy gy T
We choose T, > 0 small enough such that
oCT.
1— (eCT- — 1)||90||§1;C(R6) -
Then ) ;
T, = 510g (1+ —),

1+ 4HgO||§{LIc(R6)
is independent of £ > 0, but depends on ||go|| mk(rey and the constant C' which depends on p, k. k
and {. Now, we have (4.3.2).
From (4.3.2) and (4.3.13), we get also, for £ > 0,
(4314) HHgEH%Q(]O’T*[; HZIC+I(RG)) S 2”90“?[?(]}&6) <1 + QCT*(l + 2|\go\|§{f(RG))) .

We have proved Theorem 4.6.

4.4. Convergence and uniqueness. The second step is to prove that, for any 0 < ¢ < 1, we
can extend the approximation solution ¢, obtained by Theorem 4.2.1, to a fixed interval |0, 7|
with T, > 0 determined in Theorem 4.6 which is independent on £ > 0. Then this sequence is
convergent.

Theorem 4.10. Assume that0 < s < 1/2, y+2s <1, go > 0, go € HF(RS) for some k > 4, 1 > 3.
Let T, > 0 be given in Theorem 4.6. Then the Cauchy problem (4.2.1) admits a unique non-negative
solution up to T, satisfying

g° € L=(0, Tuf; Hf (R)) N L*(0, To]; Hpy(RY)).
Proof: We recall the notation T'= T.(Dy) from Remark 4.4. Then Theorem 4.3 asserts that the
Cauchy problem (4.2.1) with initial data gy admits a unique non-negative solution
g1 € C°([0, 2Tc); HF(R®)NL2(10,2Thcl; Hiy (RY), Tie = %TE(HQOHH[%RG))‘
If Th . > T, then the proof is completed. If T} . < T, then Theorem 4.6 implies
195 (T2, ||z rey < 2I90ll v (s -

We now consider the Cauchy problem (4.2.1) with initial data g°(71 ). Again Theorem 4.3 asserts
that there exists )

T = §T6(2||90||H{“(R6))7
such that the Cauchy problem (4.2.1) admits a unique non-negative solution

g5 € C°(([T1 e, Tre+2Toc); HF(R®) (VL2 (T1e, Th e + 2Toc[; Hfy i (RO)).
By uniqueness of solution, we obtain a non-negative solution of the Cauchy problem (4.2.1),

9" € C[0, Ty +2Ty.); HF(R®)(L*(10,Toc +2To s Hfy i (RY)).
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If Ty . +215 . > T, we finish the proof. If T} . 4275 . < T\, we consider again the Cauchy problem
(4.2.1) with initial date g°(T1,c + T2,c). Since Theorem 4.6 gives again

l9°(T1e + Toe)ll rrey < 21190l x (g,

the interval of the existence of solution is the same, that is, 275 ., so that we can extend the
solution to

g° € L>(|0, Ty +3To.[; Hf(RY)) ﬂLz(]Ole,e +3Tsc[; Hiy(R)).
By iteration, there exists m € N such that
Tie4+mlye <Ty, The+ (m+ 1T > T,
and we extend the solution up to
9" € CO[0, Trc + (m+1)To); HE(R)(L?(10,The + (m+ D)Thcl; Hfyy(RY)).

We have proved Theorem 4.10.

Theorem 4.10 asserts the existence of an approximation solution sequence
{0} ccoo. m)s HE®)(VL2(00, 75 B (RY)),
e>0
and
9% o< 0,715 mE®e)) < 2190l 15 (Ro)-
This implies that it is a weakly* compact set of L>(]0, T.[; Hff(R%)). Let
g € L*(|0,T.[; Hf(R®)),

be a limit of a subsequence of {gE}E>O.
On the other hand, by using the equation (4.2.1) and Theorem 2.1, we obtain

IN

HéthHLOO(]O,T*[; H 7N (RE)) C<||9€HL°°(]0,T*[; HE®S)) T ||96||2Loo(]0,T*[; HZ“(RG)))

< 20 (1 + 2(lgoll zx rey) 90l rx (o)

Thus, {gE}DO is a compact subset in
CH0, Tuls HiS' 70 (Q % RY),

for any compact bounded open set 2 C R3 and for any § > 0. For the variable v, we have the
weight W;_; with [ — 1 > 3/2. Then, we can take the limit in the equation (4.2.1) and also in
the mild form (4.2.5). Then g is a solution of the Cauchy problem (4.1.1). The limit g belongs to
L2(0, T.[; Hf,,(R%)) deduced from (4.3.14). Now if gy > 0, Theorem 4.3 implies that g° > 0, so
that the limit g is also non-negative on ]0, T.[. We have completed the proof for the local existence
of solutions stated in Theorem 4.1.

It remains to prove the uniqueness of solutions in Theorem 4.1. We state it more precisely as
follows.

Proposition 4.11. Assume that 0 < s < 1/2, v+2s<1,0<T < Ty, m >3 and go > 0, go €
H3'(RS). Suppose that the Cauchy problem (4.1.1) admits two (non-negative) solutions

g1, 92 € CO([O,T]; Hf(RG))-

Then g1 = gs.
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Set f = g1 — g2, by using (4.1.1), we have
(4.4.1) { fetv - Vof +61+ ) f =T, f) + T, g2),
o fli=o = 0.

We can now take W3 f as a test function to get

(4.4.2) ||W3f( Miemey + £lIWaf () 72ms) = (W:srt(gh f) +Wal'(f, g2) ,W3f)

2 dt
Recall that

L2(RS)

(g, h) = Q(u(t)g, h) + /RS . B(p(t) — u(t),)gLh'dv.do.

We estimate the last two terms of (4.4.2) in the following lemma.

Lemma 4.12. Assume that gy > 0. Then for any € > 0, there exist constants C. > 0 and
K (e, g2/l qo, 7;;mym (re))) > 0 such that

(4.4.3) (W:%Ft(glv ), W3f)L < e|Waf ()72 s + Cs||91||%oo(]o,T[;H;n(R6))||W3f(t)||%2(ﬂa6)a
(4.4.4)
I\t
‘(WS (fv g2)7W3f)L2(]R6)

Z(RG)

< e[ Waf (D)1 72@sy + K (& 192l L o, 7111y o)) W3 £ (£) |72 (s -

Notice that by using the above lemma with ¢ = x/4 and (4.4.2), we get

d
%HW?)f(t)HZL?(RG) < (C||91||2Loo(]o,T[;H;n(R6)) + K (e, |92/ < qo, Ty RG))))HWSf( 72 (o) -

Then ||[W3f(0)| z2®s) = 0 implies [|[W3f(t)|z2ms) = 0 for all 0 < ¢ < T which gives Proposition
4.11.

Proof of Lemma 4.12. As for (4.4.3), we have
(W31—‘t(91, ), st)

L2 RG)

(WSQ(H(t)glvf) 3f L o) //// u(t))gh, S W3 fdv.dodvds
- (Q(u(t)gl,wm,wgf) 2RG)+(W3Q<u<t>gl,f)—Q(u(t)ghwgﬁ ST .

////B Pt )91*(W3f) W3 fdv.dodvdx
" //// B (u(t)s — n(t)2)g1. (Ws — W3) f' Ws fdv.dodvdz

= D1+ Dy+ D3+ Dy.
The term D; is similar to By in the proof of Proposition 4.7. By using u(t)g; > 0, we have
Dy < Clgi@llmsravs@e HIF OllLzme IOl e )
for some small § > 0. The term D5 is similar to B, and we can obtain

|D2| < Cllgr() | rerevame )IIf (Ol pzms IS

T, v

Oz, e

2, v)

The terms D3, D4 are similar to I, Is in the proof of Proposition 4.8. Namely
el +104l < Cllar®llyoaes o 151300 17022
+(v+2s+9) ’
Thus, for any 0 <t < T and m > 3, we have

(WSFt(QI» f) 7W3f) Cllgille=qo,rimr®e HIWaf(Ellrzes )

L2(R 6) x, v) x, )

s+ (razotart (B 0)”

Waf®)llzzs ),

T, v
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which implies (4.4.3). The left hand side of (4.4.4) can be written as
(W3 Ft(f? 92) ) W3 f)

L2(R6)

= (WSQ(M(t)fa 92),W3f s + ////B (u(t)s — p(t),) fLghs Wi fdv.dodvdx

- (WSQ(M(t)f’ 92); WSf //// 1u(t)’ )fi(W392)/W3fdv*d0dvdx
//// nt).) f. (W3 - W3)92W3fdv*dadvdx
= Ei+ E> + Es.

Using Corollary 2.5 with m = 0,1 = 3 gives
Bl < [ IWAQUIO, g2)luo(es) IWa | 1(esy o

(r3)dz

< t
< C/Rg [l )f”L;erQS)_'_(R;“;)

< CH92||L°°(]O,T[><R3 H:’;‘Jr(WQSJﬂS)Jr

||Hszi(w+2s)+( g
@) IO L2 o) [Wa f(E)]] 2 (re)
< Cllgall poe o,y 3ii:i;‘:ia)+(]1§%))||W3f(t)||%2(R6)'
The term FEs is similar to D3, and we have
|Bo| < Clf Ol s r oyt € e l92ll oo rixms; 2 ey IWaf ()]l 2oy
< Cllf®)ll L

3/2468+(y+2s +6)+

||92||Loo(]o,T[; Hgﬁf(Re))”WSf( )||L2(R6)

< C||92||Loo( 0,T[; HL"/2+<S 6) ||W3f(t)||2L2 (R%))"
For the term E3, we can use (2.1.15) with { = 3. Then

|E3| < //// (cosO) (v —wva)” |p(t)s — p(t)] 1 £2] |W3 — Wé| \gb| (W5 f| dv,dodvda
C//// Sin 9 b(COS 0) (Wit [)el [(Ws s g2)'| W3 f| dv,dodvda
* C////sm COS@) ( )l(W3+'y+f) ||( 'y+g2) ||W3f| dv.dodvdzx

+ C’////sm b(cos 0) s ()| (Wt [)o] [(Wos g2)'| [Ws f| dvsdodvda
= FE31+E32+ E3,3-
Since 0 < 2s < 1 is assumed, for any € > 0 there exists C. > 0 such that

|E31] < O/Ri £, =, ')\|L1M+(R3) lg2(t, @, N2y 1f (s )l L2(rs) do

IN

< Cllf@)llez (R L, | (R2)) 1921l o< qo,r(xr; L2R2 ) I1f ()l L2(RE )
< Ol f ()l .2

(RS
3/248+14yT TV

< (MW OEaces ) + CoIWsF s ) 192] e oz, 2205 e,

) ‘g2HL°°(]O T[; H3/2+5(R2,v)) ||f(t)||L§(R2’v)

Similarly

|E32| < C/RS () f (2, =, ~)||L}M+(Rg) g2(t, z, ')||Lj+(JRg) £t =, )z s) dx

< C||92||Lm(]O,T[; H2/2+6(R3m))“f(t)|| Ol r2(rs ) -
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Since 3/2+ (3 +~1) > 4, we can not estimate E3 3 in the same way as for F5 5. Instead, we have

< CIW.galliegorriess ) [ [ 6cos0) et (W 11211 W | dovdoduds

|Es 3

T,v

< Clllimgo v o [, ([ 000050 o172 oo

X (// 0°b(cos 0) s (t)|(Wayys )2 dmdadv) ’ dx .

We now take the singular change of variables v, — v. The Jacobian is computed in (2.1.21) which
is of the order of #~2. Then this singular change of variables yields

[[] #7b(cos6) a1 Waye 11, dodorde
< O [[ Diwnt) ne0 Wy 1YL v,
with Di(v.,0}) = [ 67 2b(cosf)do < C [7/2(5 — ) 72725524y < C. Hence

// 0°b(cos ) s (t)|(Wayyt £)L 12 | dvsdodo

< Oll®llor @) IWais f(E 2, )22 ms)-

Therefore,
|E3,3| < CH92||Loc(]0,T[; H2+5(ngv))||W3f||L2(ngv)HW3+'y+f||L2(ngv)-

By combining the estimates on Fy, Fs, E5, we have proved (4.4.4). Now the proof of Lemma 4.12
is complete.

4.5. Proof of Theorem 1.2. Assume that fo € £¥°(R%). Then there exists py > 0 such that
epo(v)? fo € H*(R®). Choose 0 < p < pg and x > 0 small enough. By setting go = ep<”>2f0, then
go € Hlk0 (R®) for all I € N. Theorem 4.1 asserts that the Cauchy problem (4.1.1) with the initial
datum gy admits a non-negative local solution

g € C°[0, T.]; Hy (R%) (| L2(0, To[; H, (R®),  VIEN,
with T E]O,To] (To = i) Then
Ftw,0) = e 0= DO g1 0 0) € CO[0, TL]; Hf (R)) () L2(0, Tu]; H°(R®), ¥ I€N,

is a non-negative solution of the Cauchy problem (1.6). Since for 0 < ¢ < T, < Ty,

(4.5.1) 5% f e €00, T.); H* (R)),
we can conclude f € £F([0,T.] x RS ), which leads to the local existence stated in Theorem 1.2.

Suppose now for some fo € &£F(R®), the Cauchy problem (1.6) admits two solutions f; €
EX[0,Th] xRS ) and fo € £4([0,T3] x RS ). This implies that there exist po, p1,p2 > 0 such that
epo(v)QfO € HY(R),

and , ,
e f e CO([0, Th]; HY(RS)), 2 fy € C°([0, Tn); HY(RE)).
Take 0 < p < min{po, p1, p2} and x > 0 sufficiently small such that £~ > T.. = min{Ty,T>}.
Then we have ,
g0 =€) fo € HA(R®),
for any [ € N, and

g1 = e DO f € OO0, Tul; HARS)),  go = P00 f € CO(10, Toa]; HARS)),
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are two solutions of the Cauchy problem (4.1.1) with the common initial datum gog. Then Propo-
sition 4.11 gives g1 = ¢, so that f; = f5 for ¢t € [0, Ty«]. Now the uniqueness of solutions stated in
Theorem 1.2 is obvious since 17 = 15 = T,,.

On the other hand, in view of (4.5.1), ||f(¢, z, -)||r: is continuous for (t,z) € [0,T%] x R3.
Therefore, if for a compact K C R3, we have

nf [Ifo(z, )z =co >0,
then there exist 0 < Ty < T, and a closed neighborhood of K denoted by V; in R3 such that
i f( @) > L
(t,,’E)G[O,To]XVg 2
Now Theorem 1.1 implies that
fe ﬂ H, (10, To[x Vo x R3) € C>(]0, Ty[x Vo; S(RD)).
leN

It remains to prove the uniqueness of solutions of Theorem 1.2 in the soft potential case v < 0.
In this case, the uniqueness of solution can be proved in a larger functional space. We state it as
follows.

Proposition 4.13. Assume that0 < s <1/2, v<0,0<T < +oo andm > 2s+3/2, 1 > 2s+3/2.
Let fo > 0, fo € H{izs(RG). Suppose that the Cauchy problem (1.6) admits two non-negative
solutions

f1, f2 € L®(J0,T[; H{loy(R%)).

Then f1 = fs.
Proof: The proof is similar to the one for Proposition 4.11. Set F' = f; — fo2, by using (1.6), we
have
(45.2) { Fy+0-VoF = Q(fi, F)+ Q(F. f2),
Fli—o =0.
We can now take W, F' as a test function to have
1d 9
(453) §$||F(t)||L?(R6) = (Wl Q(flv F) + Wl Q(F7 f2) 7WZF) LZ(RG).
Since f; > 0 and v < 0, similar to the analysis on B; in the proof of Proposition 4.7, we have
2
(@, WiF), WiF) | < ClA@ e ey IF Oy

Using (2.1.17) with vT = 0 gives

‘(VVZQ(fla F) = Q(f1, W, F) 7W1F)

< CHfl(t)HLOO(Rg;L?(Rf’,))HF(t)”il?(Rg‘v)a

L2(RS)

and

(WlQ(F7 f2) = Q(F, Wi f2) ’WlF>

S CIFONze I f2(O) Lo ws; r2a) 1F ()l 2o )-

x)

L2(RS)

Finally, for [ > 3/2 + 2s, we have

\(Q(F, Wif2) WiF) | < ClIQ(E, Wifa)lvao) I F (1)l es)

L2(RS)

1/2
< IF )] 2 ( / 3 ||F<t,x7->||i;S<Rg)||f2<t,x,->||z;+s23(mg>)

SC”F(t)Hle?(lRﬁ)HfZ(t)HLOO(Ri;st (R3))-

1+2s
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Thus, we have, for any 0 < ¢t < T and § > 0 small enough,

d
%HFQ)H%%(RG) <C (HleLw(]O,T[; H?/2+5(ngv)) + ||f2||Loo(]0’T[ Hﬂg;réJr?S(R%v))) ||F(t)||2Lf(R6)'

3

Therefore, |[F(0)|2(re) = 0 implies [|F(¢)||2(rey = 0 for all ¢ € [0,T7.
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