133 research outputs found

    Algebraic nonlinear collective motion

    Get PDF
    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number Λ\Lambda. The Λ=0\Lambda=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positive Λ\Lambda, the droplets have a neck that becomes more pronounced as Λ\Lambda increases; for negative Λ\Lambda, the droplets contain a spherical bubble of radius Λ1/3|\Lambda|^{{1/3}}. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0\Lambda>0) and bubble and two-fluid nuclei (Λ<0\Lambda<0).Comment: 32pages, 4 figures not include

    Computing a maximum clique in geometric superclasses of disk graphs

    Full text link
    In the 90's Clark, Colbourn and Johnson wrote a seminal paper where they proved that maximum clique can be solved in polynomial time in unit disk graphs. Since then, the complexity of maximum clique in intersection graphs of d-dimensional (unit) balls has been investigated. For ball graphs, the problem is NP-hard, as shown by Bonamy et al. (FOCS '18). They also gave an efficient polynomial time approximation scheme (EPTAS) for disk graphs. However, the complexity of maximum clique in this setting remains unknown. In this paper, we show the existence of a polynomial time algorithm for a geometric superclass of unit disk graphs. Moreover, we give partial results toward obtaining an EPTAS for intersection graphs of convex pseudo-disks

    Nonlinear collective nuclear motion

    Get PDF
    For each real number Λ\Lambda a Lie algebra of nonlinear vector fields on three dimensional Euclidean space is reported. Although each algebra is mathematically isomorphic to gl(3,R)gl(3,{\bf R}), only the Λ=0\Lambda=0 vector fields correspond to the usual generators of the general linear group. The Λ<0\Lambda < 0 vector fields integrate to a nonstandard action of the general linear group; the Λ>0\Lambda >0 case integrates to a local Lie semigroup. For each Λ\Lambda, a family of surfaces is identified that is invariant with respect to the group or semigroup action. For positive Λ\Lambda the surfaces describe fissioning nuclei with a neck, while negative Λ\Lambda surfaces correspond to exotic bubble nuclei. Collective models for neck and bubble nuclei are given by irreducible unitary representations of a fifteen dimensional semidirect sum spectrum generating algebra gcm(3)gcm(3) spanned by its nonlinear gl(3,R)gl(3,{\bf R}) subalgebra plus an abelian nonlinear inertia tensor subalgebra.Comment: 13 pages plus two figures(available by fax from authors by request

    Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst

    Get PDF
    Electrocatalysts for oxygen reduction are a critical component that may dramatically enhance the performance of fuel cells and metal-air batteries, which may provide the power for future electric vehicles. Here we report a novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes, demonstrating higher electrocatalytic activity for oxygen reduction than the state-of-the-art Pt/C catalyst as well as exceptional durability during cycling in alkaline media. Theoretical calculations suggest that the rehybridization of Fe 3d orbitals with the ligand orbitals coordinated from the axial direction results in a significant change in electronic and geometric structure, which greatly increases the rate of oxygen reduction reaction. Our results demonstrate a new strategy to rationally design inexpensive and durable electrochemical oxygen reduction catalysts for metal-air batteries and fuel cells.close34

    Effects of Proteins from Culture Medium on Surface Property of Silanes- Functionalized Magnetic Nanoparticles

    Get PDF
    Monodisperse magnetic nanoparticles (MNPs) were synthesized by thermal decomposition of iron-oleate and functionalized with silanes bearing various functional groups such as amino group (NH2), short-chain poly(ethylene glycol) (PEG), and carboxylic group (COOH). Then, silanes-functionalized magnetic nanoparticles (silanes-MNPs) were incubated in cell culture medium plus fetal calf serum to investigate the effects of proteins from culture medium on surface property of MNPs. Zeta potential measurements showed that although surface charges of silanes-MNPs were different, they exhibited negative charges at neutral pH and approximate isoelectric points after they were incubated in cell culture medium. The reason was that silanes-MNPs could easily adsorb proteins from culture medium via non-covalent binding, resulting in the formation of protein-silanes-MNPs conjugates. Moreover, silanes-MNPs with various functional groups had different adsorption capacity to proteins, as confirmed by Coomassie blue fast staining method. The in vitro cell experiments showed that protein-silanes-MNPs had higher cellular uptake by cancer cells than silanes-MNPs

    Models and algorithms for energy-efficient scheduling with immediate start of jobs

    No full text
    We study a scheduling model with speed scaling for machines and the immediate start requirement for jobs. Speed scaling improves the system performance, but incurs the energy cost. The immediate start condition implies that each job should be started exactly at its release time. Such a condition is typical for modern Cloud computing systems with abundant resources. We consider two cost functions, one that represents the quality of service and the other that corresponds to the cost of running. We demonstrate that the basic scheduling model to minimize the aggregated cost function with n jobs is solvable in O(nlogn) time in the single-machine case and in O(n²m) time in the case of m parallel machines. We also address additional features, e.g., the cost of job rejection or the cost of initiating a machine. In the case of a single machine, we present algorithms for minimizing one of the cost functions subject to an upper bound on the value of the other, as well as for finding a Pareto-optimal solution

    Dietary Intake and Rural-Urban Migration in India: A Cross-Sectional Study

    Get PDF
    BACKGROUND: Migration from rural areas of India contributes to urbanisation and lifestyle change, and dietary changes may increase the risk of obesity and chronic diseases. We tested the hypothesis that rural-to-urban migrants have different macronutrient and food group intake to rural non-migrants, and that migrants have a diet more similar to urban non-migrants. METHODS AND FINDINGS: The diets of migrants of rural origin, their rural dwelling sibs, and those of urban origin together with their urban dwelling sibs were assessed by an interviewer-administered semi-quantitative food frequency questionnaire. A total of 6,509 participants were included. Median energy intake in the rural, migrant and urban groups was 2731, 3078, and 3224 kcal respectively for men, and 2153, 2504, and 2644 kcal for women (p<0.001). A similar trend was seen for overall intake of fat, protein and carbohydrates (p<0.001), though differences in the proportion of energy from these nutrients were <2%. Migrant and urban participants reported up to 80% higher fruit and vegetable intake than rural participants (p<0.001), and up to 35% higher sugar intake (p<0.001). Meat and dairy intake were higher in migrant and urban participants than rural participants (p<0.001), but varied by region. Sibling-pair analyses confirmed these results. There was no evidence of associations with time in urban area. CONCLUSIONS: Rural to urban migration appears to be associated with both positive (higher fruit and vegetables intake) and negative (higher energy and fat intake) dietary changes. These changes may be of relevance to cardiovascular health and warrant public health interventions

    MRI of the lung (2/3). Why … when … how?

    Get PDF
    Background Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs. Methods This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI. Results Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future. Conclusion This article helps new users to implement appropriate protocols on their own MRI platforms. Main Messages • MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners. • Protocol suggestions based on the available literature facilitate its use for routine • MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion. • MRI is an option for paediatrics and science when CT is contra-indicate

    Partial Dynamical Symmetries

    Full text link
    This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.Comment: 74 pages, 22 figures, published version, Progress in Particle and Nuclear Physic

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    Get PDF
    Background: Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods: We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings: In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation: Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations. Funding: Bill & Melinda Gates Foundation
    corecore