9 research outputs found

    Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence?

    Get PDF
    Many flood events involving water and sediments have been characterized using classic hydraulics principles, assuming the existence of critical flow and many other simplifications. In this paper, hyperconcentrated flow discharge was evaluated by using paleoflood reconstructions (based on paleostage indicators [PSI]) combined with a detailed hydraulic analysis of the critical flow assumption. The exact location where this condition occurred was established by iteratively determining the corresponding cross section, so that specific energy is at a minimum. In addition, all of the factors and parameters involved in the process were assessed, especially those related to the momentum equation, existing shear stresses in the wetted perimeter, and nonhydrostatic and hydrostatic pressure distributions. The superelevation of the hyperconcentrated flow, due to the flow elevation curvature, was also estimated and calibrated with the PSI. The estimated peak discharge was established once the iterative process was unable to improve the fit between the simulated depth and the depth observed from the PSI. The methodological approach proposed here can be applied to other higher-gradient mountainous torrents with a similar geomorphic configuration to the one studied in this paper. Likewise, results have been derived with fewer uncertainties than those obtained from standard hydraulic approaches, whose simplifying assumptions have not been considered. © 2011 by the American Geophysical Union.This work was funded by the Spanish Ministry of Science and Innovation within the framework of the CICYT Dendro-Avenidas project (CGL2007-62063) and the MAS Dendro-Avenidas project (CGL2010-19274). We are especially grateful to Robert D. Jarrett, Vern Manville, and one anonymous reviewer for their comments and helpful suggestions on previous versions of this manuscript.Bodoque, J.; Eguibar GalĂĄn, MÁ.; Diez-Herrero, A.; Gutierrez-Perez, I.; Ruiz-Villanueva, V. (2011). Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence?. Water Resources Research. 47(W12535). doi:10.1029/2011WR010380S47W12535Alcoverro, J., Corominas, J., & GĂłmez, M. (1999). The Barranco de ArĂĄs flood of 7 August 1996 (Biescas, Central Pyrenees, Spain). Engineering Geology, 51(4), 237-255. doi:10.1016/s0013-7952(98)00076-3Alexandrov, Y., Laronne, J. B., & Reid, I. (2007). Intra-event and inter-seasonal behaviour of suspended sediment in flash floods of the semi-arid northern Negev, Israel. Geomorphology, 85(1-2), 85-97. doi:10.1016/j.geomorph.2006.03.013BAAS, J. H., & BEST, J. L. (2008). The dynamics of turbulent, transitional and laminar clay-laden flow over a fixed current ripple. Sedimentology, 55(3), 635-666. doi:10.1111/j.1365-3091.2007.00916.xBallesteros, J. A., Bodoque, J. M., DĂ­ez-Herrero, A., Sanchez-Silva, M., & Stoffel, M. (2011). Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. Journal of Hydrology, 403(1-2), 103-115. doi:10.1016/j.jhydrol.2011.03.045Bathurst, J. C. (1985). Flow Resistance Estimation in Mountain Rivers. Journal of Hydraulic Engineering, 111(4), 625-643. doi:10.1061/(asce)0733-9429(1985)111:4(625)BERZI, D., & JENKINS, J. T. (2008). A theoretical analysis of free-surface flows of saturated granular–liquid mixtures. Journal of Fluid Mechanics, 608, 393-410. doi:10.1017/s0022112008002401Biron, P. M., Lane, S. N., Roy, A. G., Bradbrook, K. F., & Richards, K. S. (1998). Sensitivity of bed shear stress estimated from vertical velocity profiles: the problem of sampling resolution. Earth Surface Processes and Landforms, 23(2), 133-139. doi:10.1002/(sici)1096-9837(199802)23:23.0.co;2-nBisantino, T., Fischer, P., & Gentile, F. (2009). Rheological characteristics of debris-flow material in South-Gargano watersheds. Natural Hazards, 54(2), 209-223. doi:10.1007/s11069-009-9462-4Bousmar, D., & Zech, Y. (1999). Momentum Transfer for Practical Flow Computation in Compound Channels. Journal of Hydraulic Engineering, 125(7), 696-706. doi:10.1061/(asce)0733-9429(1999)125:7(696)Costa, J. E. (1984). Physical Geomorphology of Debris Flows. Developments and Applications of Geomorphology, 268-317. doi:10.1007/978-3-642-69759-3_9COUSSOT, P., & MEUNIER, M. (1996). Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3-4), 209-227. doi:10.1016/0012-8252(95)00065-8Coussot, P., Laigle, D., Arattano, M., Deganutti, A., & Marchi, L. (1998). Direct Determination of Rheological Characteristics of Debris Flow. Journal of Hydraulic Engineering, 124(8), 865-868. doi:10.1061/(asce)0733-9429(1998)124:8(865)Desilets, S. L. E., FerrĂ©, T. P. A., & Ekwurzel, B. (2008). Flash flood dynamics and composition in a semiarid mountain watershed. Water Resources Research, 44(12). doi:10.1029/2007wr006159Dietrich, W. E., & Whiting, P. (1989). Boundary shear stress and sediment transport in river meanders of sand and gravel. River Meandering, 1-50. doi:10.1029/wm012p0001Ervine, D. A., Willetts, B. B., Sellin, R. H. J., & Lorena, M. (1993). Factors Affecting Conveyance in Meandering Compound Flows. Journal of Hydraulic Engineering, 119(12), 1383-1399. doi:10.1061/(asce)0733-9429(1993)119:12(1383)Gaume, E., Livet, M., Desbordes, M., & Villeneuve, J.-P. (2004). Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999. Journal of Hydrology, 286(1-4), 135-154. doi:10.1016/j.jhydrol.2003.09.015Grant, G. E. (1997). Critical flow constrains flow hydraulics in mobile-bed streams: A new hypothesis. Water Resources Research, 33(2), 349-358. doi:10.1029/96wr03134Hessel, R. (2006). Consequences of hyperconcentrated flow for process-based soil erosion modelling on the Chinese Loess Plateau. Earth Surface Processes and Landforms, 31(9), 1100-1114. doi:10.1002/esp.1307House, P. K., & Baker, V. R. (2001). Paleohydrology of flash floods in small desert watersheds in western Arizona. Water Resources Research, 37(6), 1825-1839. doi:10.1029/2000wr900408House, P. K., & Pearthree, P. A. (1995). A geomorphologic and hydrologic evaluation of an extraordinary flood discharge estimate: Bronco Creek, Arizona. Water Resources Research, 31(12), 3059-3073. doi:10.1029/95wr02428Hungr, O. (s. f.). Classification and terminology. Springer Praxis Books, 9-23. doi:10.1007/3-540-27129-5_2Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3), 245-296. doi:10.1029/97rg00426Iverson , R. M. 2003 The debris-flow rheology myth, paper presented at debris-flow hazards mitigation: mechanics, prediction, and assessment 303 314 Millpress Rotterdam, Davos, SwitzerlandIverson, R. M., Logan, M., LaHusen, R. G., & Berti, M. (2010). The perfect debris flow? Aggregated results from 28 large-scale experiments. Journal of Geophysical Research, 115(F3). doi:10.1029/2009jf001514Jarrett, R. D. (1987). Closure to « Hydraulics of High‐Gradient Streams » by Robert D. Jarrett (November, 1984). Journal of Hydraulic Engineering, 113(7), 927-929. doi:10.1061/(asce)0733-9429(1987)113:7(927)Jarrett, R. D., & Tomlinson, E. M. (2000). Regional interdisciplinary paleoflood approach to assess extreme flood potential. Water Resources Research, 36(10), 2957-2984. doi:10.1029/2000wr900098Lavigne, F., & Suwa, H. (2004). Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology, 61(1-2), 41-58. doi:10.1016/j.geomorph.2003.11.005McCoy, S. W., Kean, J. W., Coe, J. A., Staley, D. M., Wasklewicz, T. A., & Tucker, G. E. (2010). Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology, 38(8), 735-738. doi:10.1130/g30928.1Pierson , T. C. 2005 Distinguishing between debris flows and floods from field evidence Small Watersheds U.S. Geological Survey 2004 3142Pierson, T. C. (s. f.). Hyperconcentrated flow — transitional process between water flow and debris flow. Springer Praxis Books, 159-202. doi:10.1007/3-540-27129-5_8Pierson, T. C., & Costa, J. E. (1987). A rheologic classification of subaerial sediment-water flows. Reviews in Engineering Geology, 1-12. doi:10.1130/reg7-p1Pierson, T. C., & Scott, K. M. (1985). Downstream Dilution of a Lahar: Transition From Debris Flow to Hyperconcentrated Streamflow. Water Resources Research, 21(10), 1511-1524. doi:10.1029/wr021i010p01511Rico, M., Benito, G., & Barnolas, A. (2001). Combined palaeoflood and rainfall–runoff assessment of mountain floods (Spanish Pyrenees). Journal of Hydrology, 245(1-4), 59-72. doi:10.1016/s0022-1694(01)00339-0Roca, M., MartĂ­n-Vide, J. P., & Moreta, P. J. M. (2009). Modelling a torrential event in a river confluence. Journal of Hydrology, 364(3-4), 207-215. doi:10.1016/j.jhydrol.2008.10.020Ruiz-Villanueva, V., Bodoque, J. M., DĂ­ez-Herrero, A., & Calvo, C. (2011). Triggering threshold precipitation and soil hydrological characteristics of shallow landslides in granitic landscapes. Geomorphology, 133(3-4), 178-189. doi:10.1016/j.geomorph.2011.05.018Shiono, K., & Knight, D. W. (1991). Turbulent open-channel flows with variable depth across the channel. Journal of Fluid Mechanics, 222(-1), 617. doi:10.1017/s0022112091001246Shu, A., & Fei, X. (2008). Sediment transport capacity of hyperconcentrated flow. Science in China Series G: Physics, Mechanics and Astronomy, 51(8), 961-975. doi:10.1007/s11433-008-0108-4Siviglia, A., & Cantelli, A. (2005). Effect of bottom curvature on mudflow dynamics: Theory and experiments. Water Resources Research, 41(11). doi:10.1029/2005wr004475Sleiti, A. K., & Kapat, J. S. (2008). Effect of Coriolis and centrifugal forces on turbulence and transport at high rotation and density ratios in a rib-roughened channel. International Journal of Thermal Sciences, 47(5), 609-619. doi:10.1016/j.ijthermalsci.2007.06.008SMITH, G. A. (1986). Coarse-grained nonmarine volcaniclastic sediment: Terminology and depositional process. Geological Society of America Bulletin, 97(1), 1. doi:10.1130/0016-7606(1986)972.0.co;2Sohn, Y. K., Rhee, C. W., & Kim, B. C. (1999). Debris Flow and Hyperconcentrated Flood‐Flow Deposits in an Alluvial Fan, Northwestern Part of the Cretaceous Yongdong Basin, Central Korea. The Journal of Geology, 107(1), 111-132. doi:10.1086/314334Sosio, R., & Crosta, G. B. (2009). Rheology of concentrated granular suspensions and possible implications for debris flow modeling. Water Resources Research, 45(3). doi:10.1029/2008wr006920Svendsen, J., Stollhofen, H., Krapf, C. B. ., & Stanistreet, I. G. (2003). Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology, 160(1-3), 7-31. doi:10.1016/s0037-0738(02)00334-2Tinkler, K. J. (1997). Critical flow in rockbed streams with estimated values for Manning’s n. Geomorphology, 20(1-2), 147-164. doi:10.1016/s0169-555x(97)00011-1Trieste , D. J. R. D. Jarrett 1987 Roughness coefficients of large floodsVan Maren, D. S., Winterwerp, J. C., Wu, B. S., & Zhou, J. J. (2009). Modelling hyperconcentrated flow in the Yellow River. Earth Surface Processes and Landforms, 34(4), 596-612. doi:10.1002/esp.1760Wan, Z., Wang, Z., & Julien, P. Y. (1994). Hyperconcentrated Flow. Journal of Hydraulic Engineering, 120(10), 1234-1234. doi:10.1061/(asce)0733-9429(1994)120:10(1234)Winterwerp, J. C. (2001). Stratification effects by cohesive and noncohesive sediment. Journal of Geophysical Research: Oceans, 106(C10), 22559-22574. doi:10.1029/2000jc000435Jiongxin, X. (1999). Erosion caused by hyperconcentrated flow on the Loess Plateau of China. CATENA, 36(1-2), 1-19. doi:10.1016/s0341-8162(99)00009-
    corecore