38 research outputs found

    Global kinetics for n-heptane ignition at high pressures

    Get PDF
    A kinetic mechanism of 1011 elementary reactions with 171 chemical species for n-heptane ignition is analysed and reduced to 4 global steps with adjusted rate coefficients to describe ignition at pressures around 40 atm. Two of these steps account for the high temperature branch and the other two for the low temperature branch of the ignition mechanism. The ignition delay time passes through a negative temperature dependence during the transition between the two branches. This is accounted for by the reversible third reaction step, which models the first and second 02-addition in the degenerated chain branching mechanism at low temperatures. Ignition delay times calculated with the adjusted 4-step model are compared to those from the detailed kinetics and experimental data. Finally the 4-step mechanism is analysed by asymptotic methods and explicit ignition delay time formulas are derived

    Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    Full text link
    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 microns. The sensitivity of the detector to low energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear Instruments and Methods

    Vegetation responses to abrupt climatic changes during the Last Interglacial Complex (Marine Isotope Stage 5) at Tenaghi Philippon, NE Greece

    Get PDF
    The discovery that climate variability during the Last Glacial shifted rapidly between climate states has intensified efforts to understand the distribution, timing and impact of abrupt climate change under a wide range of boundary conditions. In contribution to this, we investigate the nature of abrupt environmental changes in terrestrial settings of the Mediterranean region during the Last Interglacial Complex (Marine Isotope Stage [MIS] 5) and explore the relationships of these changes to high-latitude climate events. We present a new, temporally highly resolved (mean: 170 years) pollen record for the Last Interglacial Complex from Tenaghi Philippon, north-east Greece. The new pollen record, which spans the interval from 130,000 to 65,000 years ago, forms part of an exceptionally long polleniferous sediment archive covering the last 1.35 million years. The pollen data reveal an interglacial followed by alternating forest and steppe phases representing the interstadials and stadials of the Early Glacial. Superimposed on these millennial-scale changes is evidence of persistent sub-millennial-scale variability. We identify ten high-amplitude abrupt events in the pollen record, characterised by rapid contractions of closed forest to open steppe environment and interpreted to indicate major changes in moisture availability and temperature. The contractions in forest cover on millennial timescales appear associated with cooling events in the Mediterranean Sea, North Atlantic and Greenland regions, linked to the Dansgaard-Oeschger (DO) cycles of the Early Glacial. On sub-millennial timescales, the pattern of changes in forest cover at Tenaghi Philippon display a structure similar to the pattern of short-lived precursor and rebound-type events detected in the Greenland ice-core record. Our findings indicate that persistent, high-amplitude environmental variability occurred throughout the Early Glacial, on both millennial and submillennial timescales. Furthermore, the similarity of the pattern of change between Tenaghi Philippon and Greenland on sub-millennial timescales suggests that teleconnections between the high-latitudes and the Mediterranean region operate on sub-millennial timescales and that some terrestrial archives, such as Tenaghi Philippon, are particularly sensitive recorders of these abrupt climate changes

    Integration of planning and control in robotic formations

    Get PDF
    This paper is devoted to planning and control of a pattern formation of mobile robots when moving between goal points in a known and static environment. Path planning is performed for a reference point in the formation using the modified A* search, coupled with a proposed smoothing technique to generate a feasible trajectory with nonholonomic constraints of mobile robots taken into account. Based on this reference trajectory and the predefined formation configuration in curvilinear coordinates, each robot in the formation computes its trajectory. Formation motion control is then integrated in the proposed framework to derive velocity profiles for robots in the group, taking into account differential geometry of the trajectories. Obstacle avoidance is guaranteed by varying the coordinates of those robots that are likely in collision with obstacles relative to the reference one. Simulation results are presented to illustrate the validity of the proposed framework

    A short-term oscillation during the Holsteinian interglacial (MIS 11c): An analogy to the 8.2 ka climatic event?

    No full text
    To gain insights into the mechanisms of abrupt climate change within interglacials, we have examined the characteristics and spatial extent of a prominent, climatically induced vegetation setback during the Holsteinian interglacial (Marine Isotope Stage 11c). Based on analyses of pollen and varves of lake sediments from Dethlingen (northern Germany), this climatic oscillation, here termed the "Older Holsteinian Oscillation" (OHO), lasted 220 years. It can be subdivided into a 90-year-long decline of temperate tree taxa associated with an expansion of Pinus and herbs, and a 130-year-long recovery phase marked by the expansion of Betula and Alnus, and the subsequent recovery of temperate trees. The climate-induced nature of the OHO is corroborated by changes in diatom assemblages and delta O-18 measured on biogenic silica indicating an impact on the aquatic ecosystem of the Dethlingen paleolake. The OHO is widely documented in pollen records from Europe north of 50 degrees latitude and is characterized by boreal climate conditions with cold winters from the British Isles to Poland, with a gradient of decreasing temperature and moisture availability, and increased continentality towards eastern Europe. This pattern points to a weakened influence of the westerlies and/or a stronger influence of the Siberian High. A comparison of the OHO with the 8.2 ka event of the Holocene reveals close similarities regarding the imprint on terrestrial ecosystems and the interglacial boundary conditions. Hence, in analogy to the 8.2 ka event, a transient, meltwater-induced slowdown of the North Atlantic Deep Water formation appears as a plausible trigger mechanism for the OHO. If correct, meltwater release into the North Atlantic may be a more common agent of abrupt climate change during interglacials than previously thought. We conclude that meltwater-induced climate setbacks during interglacials preferentially occurred when low rates of summer insolation increase during the preceding terminations facilitated the persistence of large-scale continental ice-sheets well into the interglacials. (C) 2012 Elsevier B.V. All rights reserved

    Millennial-scale variability during the last glacial in vegetation records from Europe

    No full text
    This paper evaluates the evidence for millennial-scale variability in pollen records of the last glacial (Marine Isotope Stages 4, 3, and 2; 73.5-14.7 calendar ka BP) from the European continent, taking into account information derived from long, continuous terrestrial records, the fragmentary northern European terrestrial record, and marine pollen records of the European continental margins. Pollen records from these numerous European sites provide evidence for multiple intervals of relatively warm and humid conditions during the last glacial, which promoted the establishment of grassland and shrub tundra in northwestern Europe, shrub- and forest-tundra in northeastern Europe, open boreal forest in central western Europe and the Alpine region, and open temperate forest in southern Europe. The northern limit for temperate forest development during these intervals was at ~45°N, with a subsequent northward transition to tundra across a latitudinal band of ~15° in western and central Europe, and a greater northward extension of boreal forest in eastern Europe, with boreal forest elements detected close to their present-day limits at ~70°N. A much smaller number of sites with sufficiently high temporal resolution provide evidence that warming intervals correspond to millennial-scale variability as recorded in Greenland ice cores. A synthesis of sites providing high-resolution terrestrial and marine records from Europe is undertaken in order to examine geographical and temporal patterns in the expression of Dansgaard-Oeschger (D-O) cycles in the European vegetation. Detailed comparison of temperate forest development at these sites during four specific D-O cycles (D-O 16-17, 14, 12 and 8) reveals contrasts between vegetation response at southernmost European latitudes (below 40°N) and at latitudes above 40°N. At southernmost latitudes, marked forest development occurred during all four D-O cycles including D-O 16-17 and 8, while at latitudes above 40°N, forest development was stronger during D-O 14 and 12 than either D-O 16-17 or 8

    Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to Synaptic Deficits in Fragile X Syndrome.

    Get PDF
    The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes

    AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011

    Get PDF
    Therapeutic drug monitoring (TDM), i. e., the quantification of serum or plasma concentrations of medications for dose optimization, has proven a valuable tool for the patient-matched psychopharmacotherapy. Uncertain drug adherence, suboptimal tolerability, non-response at therapeutic doses, or pharmacokinetic drug-drug interactions are typical situations when measurement of medication concentrations is helpful. Patient populations that may predominantly benefit from TDM in psychiatry are children, pregnant women, elderly patients, individuals with intelligence disabilities, forensic patients, patients with known or suspected genetically determined pharmacokinetic abnormalities or individuals with pharmacokinetically relevant comorbidities. However, the potential benefits of TDM for optimization of pharmacotherapy can only be obtained if the method is adequately integrated into the clinical treatment process. To promote an appropriate use of TDM, the TDM expert group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued guidelines for TDM in psychiatry in 2004. Since then, knowledge has advanced significantly, and new psychopharmacologic agents have been introduced that are also candidates for TDM. Therefore the TDM consensus guidelines were updated and extended to 128 neuropsychiatric drugs. 4 levels of recommendation for using TDM were defined ranging from "strongly recommended" to "potentially useful". Evidence-based "therapeutic reference ranges" and "dose related reference ranges" were elaborated after an extensive literature search and a structured internal review process. A "laboratory alert level" was introduced, i. e., a plasma level at or above which the laboratory should immediately inform the treating physician. Supportive information such as cytochrome P450 substrate and inhibitor properties of medications, normal ranges of ratios of concentrations of drug metabolite to parent drug and recommendations for the interpretative services are given. Recommendations when to combine TDM with pharmacogenetic tests are also provided. Following the guidelines will help to improve the outcomes of psychopharmacotherapy of many patients especially in case of pharmacokinetic problems. Thereby, one should never forget that TDM is an interdisciplinary task that sometimes requires the respectful discussion of apparently discrepant data so that, ultimately, the patient can profit from such a joint eff ort
    corecore