409 research outputs found

    Cyclic nucleotide-regulated channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Cyclic nucleotide-gated (CNG) channels are responsible for signalling in the primary sensory cells of the vertebrate visual and olfactory systems.CNG channels are voltage-independent cation channels formed as tetramers. Each subunit has 6TM, with the pore-forming domain between TM5 and TM6. CNG channels were first found in rod photoreceptors [69, 98], where light signals through rhodopsin and transducin to stimulate phosphodiesterase and reduce intracellular cyclic GMP level. This results in a closure of CNG channels and a reduced ‘dark current’. Similar channels were found in the cilia of olfactory neurons [153] and the pineal gland [60]. The cyclic nucleotides bind to a domain in the C terminus of the subunit protein: other channels directly binding cyclic nucleotides include HCN, eag and certain plant potassium channels.Hyperpolarisation-activated, cyclic nucleotide-gated (HCN)The hyperpolarisation-activated, cyclic nucleotide-gated (HCN) channels are cation channels that are activated by hyperpolarisation at voltages negative to ~-50 mV. The cyclic nucleotides cyclic AMP and cyclic GMP directly activate the channels and shift the activation curves of HCN channels to more positive voltages, thereby enhancing channel activity. HCN channels underlie pacemaker currents found in many excitable cells including cardiac cells and neurons [56, 164]. In native cells, these currents have a variety of names, such as Ih, Iq and If. The four known HCN channels have six transmembrane domains and form tetramers. It is believed that the channels can form heteromers with each other, as has been shown for HCN1 and HCN4 [2]. High resolution structural studies of CNG and HCN channels has provided insight into the the gating processes of these channels [117, 121]. A standardised nomenclature for CNG and HCN channels has been proposed by the NC-IUPHAR subcommittee on voltage-gated ion channels [88]

    Cyclic nucleotide-regulated channels (CNG) in GtoPdb v.2021.3

    Get PDF
    Cyclic nucleotide-gated (CNG) channels are responsible for signalling in the primary sensory cells of the vertebrate visual and olfactory systems. CNG channels are voltage-independent cation channels formed as tetramers. Each subunit has 6TM, with the pore-forming domain between TM5 and TM6. CNG channels were first found in rod photoreceptors [83, 120], where light signals through rhodopsin and transducin to stimulate phosphodiesterase and reduce intracellular cyclic GMP level. This results in a closure of CNG channels and a reduced ‘dark current’. Similar channels were found in the cilia of olfactory neurons [181] and the pineal gland [71]. The cyclic nucleotides bind to a domain in the C terminus of the subunit protein: other channels directly binding cyclic nucleotides include hyperolarisation-activated, cyclic nucleotide-gated channels (HCN), ether-a-go-go and certain plant potassium channels.The HCN channels are cation channels that are activated by hyperpolarisation at voltages negative to ~-50 mV. The cyclic nucleotides cyclic AMP and cyclic GMP directly bind to the cyclic nucleotide-binding domain of HCN channels and shift their activation curves to more positive voltages, thereby enhancing channel activity. HCN channels underlie pacemaker currents found in many excitable cells including cardiac cells and neurons [64, 192]. In native cells, these currents have a variety of names, such as Ih, Iq and If. The four known HCN channels have six transmembrane domains and form tetramers. It is believed that the channels can form heteromers with each other, as has been shown for HCN1 and HCN4 [2]. High resolution structural studies of CNG and HCN channels has provided insight into the the gating processes of these channels [139, 146, 140]. A standardised nomenclature for CNG and HCN channels has been proposed by the NC-IUPHAR Subcommittee on voltage-gated ion channels [108]

    Cyclic nucleotide-regulated channels (CNG) in GtoPdb v.2023.1

    Get PDF
    Cyclic nucleotide-gated (CNG) channels are responsible for signalling in the primary sensory cells of the vertebrate visual and olfactory systems. CNG channels are voltage-independent cation channels formed as tetramers. Each subunit has 6TM, with the pore-forming domain between TM5 and TM6. CNG channels were first found in rod photoreceptors [83, 120], where light signals through rhodopsin and transducin to stimulate phosphodiesterase and reduce intracellular cyclic GMP level. This results in a closure of CNG channels and a reduced ‘dark current’. Similar channels were found in the cilia of olfactory neurons [181] and the pineal gland [71]. The cyclic nucleotides bind to a domain in the C terminus of the subunit protein: other channels directly binding cyclic nucleotides include hyperolarisation-activated, cyclic nucleotide-gated channels (HCN), ether-a-go-go and certain plant potassium channels.The HCN channels are cation channels that are activated by hyperpolarisation at voltages negative to ~-50 mV. The cyclic nucleotides cyclic AMP and cyclic GMP directly bind to the cyclic nucleotide-binding domain of HCN channels and shift their activation curves to more positive voltages, thereby enhancing channel activity. HCN channels underlie pacemaker currents found in many excitable cells including cardiac cells and neurons [65, 192]. In native cells, these currents have a variety of names, such as Ih, Iq and If. The four known HCN channels have six transmembrane domains and form tetramers. It is believed that the channels can form heteromers with each other, as has been shown for HCN1 and HCN4 [2]. High resolution structural studies of CNG and HCN channels has provided insight into the the gating processes of these channels [139, 146, 140]. A standardised nomenclature for CNG and HCN channels has been proposed by the NC-IUPHAR Subcommittee on voltage-gated ion channels [108]

    An ecological method for the sampling of nonverbal signalling behaviours of young children with profound and multiple learning disabilities (PMLD)

    Get PDF
    - Background: Profound and multiple learning disabilities (PMLD) are a complex range of disabilities that affect the general health and wellbeing of the individual and their capacity to interact and learn. - Method: We developed a new methodology to capture the nonsymbolic signalling behaviours of children with PMLD within the context of a face-to-face interaction with a caregiver to provide analysis at a micro-level of descriptive detail incorporating the use of the ELAN digital video software. - Conclusion: The signalling behaviours of participants in a natural, everyday interaction can be better understood with the use of this innovation in methodology, which is predicated on the ecology of communication. Recognition of the developmental ability of the participants is an integral factor within that ecology. The method presented establishes an advanced account of the modalities through which a child affected by PMLD is able to communicate

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
    corecore