329 research outputs found

    Nano-manipulation of diamond-based single photon sources

    Full text link
    The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a new technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a ~ 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.Comment: 6 pages, 4 figure

    Size-fractionated labile trace elements in the Northwest Pacific and Southern Oceans

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 126 (2011): 108-113, doi:10.1016/j.marchem.2011.04.004.Photosynthesis by marine phytoplankton requires bioavailable forms of several trace elements that are found in extremely low concentrations in the open ocean. We have compared the concentration, lability and size distribution (< 1 nm and < 10 nm) of a suite of trace elements that are thought to be limiting to primary productivity as well as a toxic element (Pb) in two High Nutrient Low Chlorophyll (HNLC) regions using a new dynamic speciation technique, Diffusive Gradients in Thin-film (DGT). The labile species trapped within the DGT probes have a size that is smaller or similar than the pore size of algal cell walls and thus present a proxy for bioavailable species. Total Dissolvable trace element concentrations (TD concentration) varied between 0.05 nM (Co) and 4.0 nM (Ni) at K2 (Northwest Pacific Ocean) and between 0.026 nM (Co) and 4.7 nM (Ni) in the Southern Ocean. The smallest size fractionated labile concentrations (< 1 nm) observed at Southern Ocean sampling stations ranged between 0.002 nM (Co) and 2.1 nM (Ni). Moreover, large differences in bioavailable fractions (ratio of labile to TD concentration) were observed between the trace elements. In the Northwest Pacific Ocean Fe, Cu and Mn had lower labile fractions (between 10 and 44%) than Co, Cd, Ni and Pb (between 80 and 100%). In the Southern Ocean a similar trend was observed, and in addition: (1) Co, Cd, Ni and Pb have lower labile fractions in the Southern Ocean than in the Northwest Pacific and (2) the ratios of <1nm to dissolvable element concentrations at some Southern Ocean stations were very low and varied between 4 and16 %.This research was supported by Federal Science Policy Office, Brussels, through contracts EV/03/7A, SD/CA/03A, the Research Foundation Flanders through grant G.0021.04 and Vrije Universiteit Brussel via grant GOA 22, as well as for K2, the VERTIGO program funding primarily by the US National Science Foundation programs in Chemical and Biological Oceanograph

    The Changing Face of Winter: Lessons and Questions From the Laurentian Great Lakes

    Get PDF
    Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter-period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world\u27s seasonally freezing lakes and seas

    Urban community gardeners' knowledge and perceptions of soil contaminant risks

    Get PDF
    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether

    CLIMP-63 is a gentamicin-binding protein that is involved in drug-induced cytotoxicity

    Get PDF
    Aminoglycoside-induced nephrotoxicity and ototoxicity is a major clinical problem. To understand how aminoglycosides, including gentamicin, induce cytotoxicity in the kidney proximal tubule and the inner ear, we identified gentamicin-binding proteins (GBPs) from mouse kidney cells by pulling down GBPs with gentamicin–agarose conjugates and mass spectrometric analysis. Among several GBPs specific to kidney proximal tubule cells, cytoskeleton-linking membrane protein of 63 kDa (CLIMP-63) was the only protein localized in the endoplasmic reticulum, and was co-localized with gentamicin-Texas Red (GTTR) conjugate after cells were treated with GTTR for 1 h. In western blots, kidney proximal tubule cells and cochlear cells, but not kidney distal tubule cells, exhibited a dithiothreitol (DTT)-resistant dimer band of CLIMP-63. Gentamicin treatment increased the presence of DTT-resistant CLIMP-63 dimers in both kidney proximal (KPT11) and distal (KDT3) tubule cells. Transfection of wild-type and mutant CLIMP-63 into 293T cells showed that the gentamicin-dependent dimerization requires CLIMP-63 palmitoylation. CLIMP-63 siRNA transfection enhanced cellular resistance to gentamicin-induced toxicity, which involves apoptosis, in KPT11 cells. Thus, the dimerization of CLIMP-63 is likely an early step in aminoglycoside-induced cytotoxicity in the kidney and cochlea. Gentamicin also enhanced the binding between CLIMP-63 and 14-3-3 proteins, and we also identified that 14-3-3 proteins are involved in gentamicin-induced cytotoxicity, likely by binding to CLIMP-63

    Positive selection inhibits gene mobilization and transfer in soil bacterial communities

    Get PDF
    Horizontal gene transfer (HGT) between bacterial lineages is a fundamental evolutionary process that accelerates adaptation. Sequence analyses show that conjugative plasmids are principal agents of HGT in natural communities. However, we lack understanding of how the ecology of bacterial communities and their environments affect the dynamics of plasmid-mediated gene mobilization and transfer. Here we show, in simple experimental soil bacterial communities containing a conjugative mercury resistance plasmid, the repeated, independent mobilization of transposon-borne genes from chromosome to plasmid, plasmid to chromosome and, in the absence of mercury selection, interspecific gene transfers from the chromosome of one species to the other via the plasmid. By reducing conjugation, positive selection for plasmid-encoded traits, like mercury resistance, can consequently inhibit HGT. Our results suggest that interspecific plasmid-mediated gene mobilization is most likely to occur in environments where plasmids are infectious, parasitic elements rather than those where plasmids are positively selected, beneficial elements

    Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary

    Get PDF
    Dolomitization of relatively thick carbonate successions occurs via an effective fluid circulation mechanism, since the replacement process requires a large amount of Mg-rich fluid interacting with the CaCO3 precursor. In the western end of the Neotethys, fault-controlled extensional basins developed during the Late Triassic spreading stage. In the Buda Hills and Danube-East blocks, distinct parts of silica and organic matter-rich slope and basinal deposits are dolomitized. Petrographic, geochemical, and fluid inclusion data distinguished two dolomite types: (1) finely to medium crystalline and (2) medium to coarsely crystalline. They commonly co-occur and show a gradual transition. Both exhibit breccia fabric under microscope. Dolomite texture reveals that the breccia fabric is not inherited from the precursor carbonates but was formed during the dolomitization process and under the influence of repeated seismic shocks. Dolomitization within the slope and basinal succession as well as within the breccia zones of the underlying basement block is interpreted as being related to fluid originated from the detachment zone and channelled along synsedimentary normal faults. The proposed conceptual model of dolomitization suggests that pervasive dolomitization occurred not only within and near the fault zones. Permeable beds have channelled the fluid towards the basin centre where the fluid was capable of partial dolomitization. The fluid inclusion data, compared with vitrinite reflectance and maturation data of organic matter, suggest that the ascending fluid was likely hydrothermal which cooled down via mixing with marine-derived pore fluid. Thermal gradient is considered as a potential driving force for fluid flow

    Irradiation-Induced Deinococcus radiodurans Genome Fragmentation Triggers Transposition of a Single Resident Insertion Sequence

    Get PDF
    Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA–damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences
    corecore