503 research outputs found
Access and safety at geological sites: a manual for landowners, quarry operators and the geological visitor
Mineral Industry Research Organisation: Aggregates Sustainability Levy Fun
Recommended from our members
Electron beam energy deposition and VUV efficiency measurements in rare gases
Reliable techniques for the determination of the energy/cm deposited by an e-beam into a gas as well as the energy/cm radiated have been developed in order to obtain dependable data on the VUV fluorescence efficiency for rare gas excimers. Spatially resolved total stopping calorimetry in the gas at the cell foil was used to characterize the energy distribution in the e-beam (approximately 200 kV, few Amp/cm, approximately 1 sec) transmitted by a ''hibachi''-supported 1-mil Ti foil. By using these data, suitable input for a 3-D Monte Carlo electron transport code (SANDYL) was generated. The spatial distribution of energy deposition in the gas was then calculated taking into account multiple scattering and cell geometry. The validity of the SANDYL technique is substantiated by excellent agreement between the measured and calculated energy flux on a vertical stack of five fast risetime ( less than 1 msec) calorimeters at several depth positions [0 less than Z(cm) less than 15] in the gas [1 less than P(atm) less than 3]. Calibrated optical components were used in a well defined geometry that permitted calculation of the effective radiating volume observed. By using the above techniques, high absolute efficiencies (10--30 percent) have been measured for rare gas VUV continua emission which can photolytically produce group VI metastables [e.g., 0(S), S(S)] of interest as fusion visible-laser candidates
Solar Wakes of Dark Matter Flows
We analyze the effect of the Sun's gravitational field on a flow of cold dark
matter (CDM) through the solar system in the limit where the velocity
dispersion of the flow vanishes. The exact density and velocity distributions
are derived in the case where the Sun is a point mass. The results are extended
to the more realistic case where the Sun has a finite size spherically
symmetric mass distribution. We find that regions of infinite density, called
caustics, appear. One such region is a line caustic on the axis of symmetry,
downstream from the Sun, where the flow trajectories cross. Another is a
cone-shaped caustic surface near the trajectories of maximum scattering angle.
The trajectories forming the conical caustic pass through the Sun's interior
and probe the solar mass distribution, raising the possibility that the solar
mass distribution may some day be measured by a dark matter detector on Earth.
We generalize our results to the case of flows with continuous velocity
distributions, such as that predicted by the isothermal model of the Milky Way
halo.Comment: 30 pages, 8 figure
Mapping the planetâs critical natural assets
Sustaining the organisms, ecosystems and processes that underpin human wellbeing is necessary to achieve sustainable development. Here we define critical natural assets as the natural and semi-natural ecosystems that provide 90% of the total current magnitude of 14 types of natureâs contributions to people (NCP), and we map the global locations of these critical natural assets at 2âkm resolution. Critical natural assets for maintaining local-scale NCP (12 of the 14 NCP) account for 30% of total global land area and 24% of national territorial waters, while 44% of land area is required to also maintain two global-scale NCP (carbon storage and moisture recycling). These areas overlap substantially with cultural diversity (areas containing 96% of global languages) and biodiversity (covering area requirements for 73% of birds and 66% of mammals). At least 87% of the worldâs population live in the areas benefitting from critical natural assets for local-scale NCP, while only 16% live on the lands containing these assets. Many of the NCP mapped here are left out of international agreements focused on conserving species or mitigating climate change, yet this analysis shows that explicitly prioritizing critical natural assets and the NCP they provide could simultaneously advance development, climate and conservation goals.We thank all the participants of two working groups hosted by Conservation International and the Natural Capital Project for their insights and intellectual contributions. For further advice or assistance, we thank A. Adams, K. Brandon, K. Brauman, A. Cramer, G. Daily, J. Fisher, R. Gould, L. Mandle, J. Montgomery, A. Rodewald, D. Rossiter, E. Selig, A. Vogl and T. M. Wright. The two working groups that provided the foundation for this analysis were funded by support from the Marcus and Marianne Wallenberg Foundation to the Natural Capital Project (R.C.-K. and R.P.S.) and the Betty and Gordon Moore to Conservation International (R.A.N. and P.M.C.)
Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum.
The plasma membrane calcium extrusion mechanism, PMCA (plasma membrane calcium ATPase) isoform 2 is richly expressed in the brain and particularly the cerebellum. Whilst PMCA2 is known to interact with a variety of proteins to participate in important signalling events [Strehler EE, Filoteo AG, Penniston JT, Caride AJ (2007) Plasma-membrane Ca(2+) pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans 35 (Pt 5):919-922], its molecular interactions in brain synapse tissue are not well understood. An initial proteomics screen and a biochemical fractionation approach identified PMCA2 and potential partners at both pre- and post-synaptic sites in synapse-enriched brain tissue from rat. Reciprocal immunoprecipitation and GST pull-down approaches confirmed that PMCA2 interacts with the post-synaptic proteins PSD95 and the NMDA glutamate receptor subunits NR1 and NR2a, via its C-terminal PDZ (PSD95/Dlg/ZO-1) binding domain. Since PSD95 is a well-known partner for the NMDA receptor this raises the exciting possibility that all three interactions occur within the same post-synaptic signalling complex. At the pre-synapse, where PMCA2 was present in the pre-synapse web, reciprocal immunoprecipitation and GST pull-down approaches identified the pre-synaptic membrane protein syntaxin-1A, a member of the SNARE complex, as a potential partner for PMCA2. Both PSD95-PMCA2 and syntaxin-1A-PMCA2 interactions were also detected in the molecular and granule cell layers of rat cerebellar sagittal slices by immunohistochemistry. These specific molecular interactions at cerebellar synapses may allow PMCA2 to closely control local calcium dynamics as part of pre- and post-synaptic signalling complexes
The backward-bending commute times of married women with household responsibility
The purpose of this paper is to examine theoretically and empirically whether the commute times of married women follow a backward-bending pattern with respect to wage rates. The existing literature has shown that married women tend to choose short commutes because of their relatively low wages combined with comparatively heavy household responsibilities. However, a workleisure model, which includes the simultaneous decision wives take regarding commute times and wage rates, suggests that married women employed in highly paid positions also undertake short commutes, while married women with wage rates in the middle range choose long commutes. These results suggest that the commute times of married women display a backward-bending pattern. Applying an instrumental variable strategy that accounts for the endogeneity of wage rates, the empirical results for employed married women in Japan appear to support this nding. Moreover, one of our results suggests that highly paid married women can still secure greater leisure time with short commutes, despite retaining a heavy load of domestic responsibilities.Working Paper, No.234, 2008.9.1çhttp://hdl.handle.net/10110/254
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning
Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (Nâ=â53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes
Tissue culture of ornamental cacti
Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family
A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets
A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan
- âŠ