1,528 research outputs found

    The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion

    Get PDF
    Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modelled as an elongating path or series of segments without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modelling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce "fiber walks" as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modelled as a lateral contraction of the lattice. This contraction influences the possible follow-up steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness.Comment: Plos One (in press

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    On the X-rank with respect to linear projections of projective varieties

    Get PDF
    In this paper we improve the known bound for the XX-rank RX(P)R_{X}(P) of an element PPNP\in {\mathbb{P}}^N in the case in which XPnX\subset {\mathbb P}^n is a projective variety obtained as a linear projection from a general vv-dimensional subspace VPn+vV\subset {\mathbb P}^{n+v}. Then, if XPnX\subset {\mathbb P}^n is a curve obtained from a projection of a rational normal curve CPn+1C\subset {\mathbb P}^{n+1} from a point OPn+1O\subset {\mathbb P}^{n+1}, we are able to describe the precise value of the XX-rank for those points PPnP\in {\mathbb P}^n such that RX(P)RC(O)1R_{X}(P)\leq R_{C}(O)-1 and to improve the general result. Moreover we give a stratification, via the XX-rank, of the osculating spaces to projective cuspidal projective curves XX. Finally we give a description and a new bound of the XX-rank of subspaces both in the general case and with respect to integral non-degenerate projective curves.Comment: 10 page

    Polarization of macrophages toward M2 phenotype is favored by reduction in iPLA2β (group VIA phospholipase A2)*

    Get PDF
    Macrophages are important in innate and adaptive immunity. Macrophage participation in inflammation or tissue repair is directed by various extracellular signals and mediated by multiple intracellular pathways. Activation of group VIA phospholipase A2 (iPLA2β) causes accumulation of arachidonic acid, lysophospholipids, and eicosanoids that can promote inflammation and pathologic states. We examined the role of iPLA2β in peritoneal macrophage immune function by comparing wild type (WT) and iPLA2β−/− mouse macrophages. Compared with WT, iPLA2β−/− macrophages exhibited reduced proinflammatory M1 markers when classically activated. In contrast, anti-inflammatory M2 markers were elevated under naïve conditions and induced to higher levels by alternative activation in iPLA2β−/− macrophages compared with WT. Induction of eicosanoid (12-lipoxygenase (12-LO) and cyclooxygenase 2 (COX2))- and reactive oxygen species (NADPH oxidase 4 (NOX4))-generating enzymes by classical activation pathways was also blunted in iPLA2β−/− macrophages compared with WT. The effects of inhibitors of iPLA2β, COX2, or 12-LO to reduce M1 polarization were greater than those to enhance M2 polarization. Certain lipids (lysophosphatidylcholine, lysophosphatidic acid, and prostaglandin E2) recapitulated M1 phenotype in iPLA2β−/− macrophages, but none tested promoted M2 phenotype. These findings suggest that (a) lipids generated by iPLA2β and subsequently oxidized by cyclooxygenase and 12-LO favor macrophage inflammatory M1 polarization, and (b) the absence of iPLA2β promotes macrophage M2 polarization. Reducing macrophage iPLA2β activity and thereby attenuating macrophage M1 polarization might cause a shift from an inflammatory to a recovery/repair milieu

    Associations between dietary patterns and post-bronchodilation lung function in the SAPALDIA cohort

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is not restricted to smokers. Dietary habits may contribute to the disease occurrence. Epidemiological studies point to a protective effect of fruit and vegetable intake against COPD. Objective: To investigate the associations between dietary patterns and parameters of lung function related to COPD in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). Methods: Data were included from the second follow-up assessment of the SAPALDIA cohort in 2010-2011 using a food frequency questionnaire. Principal component factor analysis was used to derive dietary patterns, whose association with FEV1, FEV1/FVC, FEF2575, and COPD was investigated by applying multivariate regression analyses. Results: After adjustment for potential confounders, the “prudent dietary pattern” characterised by the predominant food groups vegetables, fruits, water, tea and coffee, fish, and nuts was positively associated with FEV1 (increase of 40 mL per SD, p < 0.001). Also for factor 3 (“high-carbohydrate diet”), we found a significant positive association with FEV1 (with an increase per SD of 36 mL, p = 0.006). Conclusions: The main results are consistent with a protective effect of a diet rich in fruits, vegetables, fish, and nuts against age-related chronic respiratory disease. If confirmed in prospective cohorts, our results may guide nutritional counselling towards respiratory health promotion

    Public sector unions and the free-rider problem

    Get PDF
    A model of union membership is developed for State Government employees in Iowa. The union jointly produces a public and a private good using the resources from members. Employees have the choice to contribute to the union or to free-ride on the contributions of others;A probit model is used to model union membership. Membership is model as a function of wage gains, tenure, union dues and other individual characteristics;The empirical model is estimated using data on state government employees for 1980--1992. This data has very detailed wage information. The data also contains information on the dues required for union membership. Comparable worth pay plans were implemented in 1985. This provides a quasi-exogenous shock to relative wages that are not common in the public sector;A model of quits is also developed for the Iowa state employee. This model is used to develop statistical controls for potential section bias in the membership data. The model suggests that quits are negative to wages and to tenure during the early years of employment;Union membership is found to be wage elastic. In addition, membership appears to be more responsive to idiosyncratic wage gains than wage gains that accrue to all employees. The model was also used to estimate the impact that comparable worth wage increases had on membership. Union membership appears to be price inelastic when selection bias is not controlled for. Once you control for the potential bias, it appears that union membership is unitary elastic. This is consistent with an equilibrium where revenue to the union is maximized. It does not appear that other\u27s contributions are close substitutes for own contributions. This suggests that union contributions are, for the most part, private goods

    Legislative, Delegated Acts, Comitology &amp; Interinstitutional Conundrum in EU Law:Configuring EU Normative Spaces

    Get PDF
    This article seeks to contribute to The Conference on the Future of Europe by arguing that its debates on substantive policies and democratic foundations cannot be detached from consideration being given to the configuration of the Union’s normative spaces in which those policies will be developed and implemented. In its current stage of development, we can find in the Union legal system two competing conceptions for the configuration of its different normative spaces, one that relies on the Member States for resources and legitimacy and another that intends to free itself from those constraints. This article will argue that a uniquely European model of governance will benefit from the integration of both conceptions in the configuration of its normative spaces, not only where they are provided for by the Union Treaties but also those that have developed in the shadow of those official spaces, which they complement and increasingly supplant

    The Tidal Disruption of Giant Stars and Their Contribution to the Flaring Supermassive Black Hole Population

    Full text link
    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the t5/3t^{-5/3} decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on months to years timescales. We calculate the relative disruption rates of stars of varying evolutionary stages in typical galactic centers, then use our results to produce Monte Carlo realizations of the expected flaring event populations. We find that the demographics of tidal disruption flares are strongly dependent on both stellar and black hole mass, especially near the limiting SMBH mass scale of 108M\sim 10^8 M_\odot. At this black hole mass, we predict a sharp transition in the SMBH flaring diet beyond which all observable disruptions arise from evolved stars, accompanied by a dramatic cutoff in the overall tidal disruption flaring rate. Black holes less massive than this limiting mass scale will show observable flares from both main sequence and evolved stars, with giants contributing up to 10% of the event rate. The relative fractions of stars disrupted at different evolutionary states can constrain the properties and distributions of stars in galactic nuclei other than our own.Comment: 18 pages, 18 figures, submitted to Ap

    Precipitation from Space: Advancing Earth System Science

    Get PDF
    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be otherwise possible. These developments have taken place in parallel with the growth of an increasingly interconnected scientific environment. Scientists from different disciplines can easily interact with each other via information and materials they encounter online, and collaborate remotely without ever meeting each other in person. Likewise, these precipitation datasets are quickly and easily available via various data portals and are widely used. Within the framework of the NASA/JAXA Global Precipitation Measurement (GPM mission, these applications will become increasingly interconnected. We emphasize that precipitation observations by themselves provide an incomplete picture of the state of the atmosphere. For example, it is unlikely that a richer understanding of the global water cycle will be possible by standalone missions and algorithms, but must also involve some component of data, where model analyses of the physical state are constrained alongside multiple observations (e.g., precipitation, evaporation, radiation). The next section provides examples extracted from the many applications that use various high-resolution precipitation products. The final section summarizes the future system for global precipitation processing
    corecore