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(inset) The increasingly lengthy time span of space-based precipitation data records 
has enabled cross-discipline investigations and applications that would otherwise not 
be possible, revealing discoveries related to hydrological and land processes, climate, 
atmospheric composition, and ocean freshwater budget, and proving a vital element in 
addressing societal issues. 
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1. Introduction 

Of the three primary sources of spatially contiguous precipitation observations (surface 

networks, ground-based radar, and satellite-based radar/radiometers), only the last is a 

viable source over ocean and much of the Earth’s land.  As recently as 15 years ago, 

users needing quantitative detail of precipitation on anything under a monthly time scale 

relied upon products derived from geostationary satellite thermal infrared (IR) indices 

(e.g., Arkin and Meisner, 1987).  The Special Sensor Microwave Imager (SSMI) 

passive microwave (PMW) imagers originated in 1987 and continue today with the 

SSMI sounder (SSMIS) sensor.  The fortunate longevity of the joint National 

Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration 

Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the 

environmental science community a nearly unbroken data record (as of April 2012, over 

14 years) of tropical and sub-tropical precipitation processes.  TRMM was originally 

conceived in the mid-1980s (Simpson et al. 1988) as a climate mission with relatively 

modest goals, including monthly averaged precipitation.  TRMM data were quickly 

exploited for model data assimilation (Hou et al. 2001) and, beginning in 1999 with the 

availability of near real time data, for tropical cyclone warnings (Hawkins et al. 2001). 

 

To overcome the intermittently spaced revisit from these and other low Earth-orbiting 

satellites, many methods to merge PMW-based precipitation data and geostationary 

satellite observations have been developed, such as the TRMM Multisatellite 

Precipitation Product (Huffman et, al, 2007) and the Climate Prediction Center (CPC) 

morphing method (CMORPH) (Joyce et. al, 2004).  The purpose of this article is not to 

provide a survey or assessment of these and other satellite-based precipitation datasets, 

which are well summarized in several recent articles (Tapiador et al., 2012; Kidd et al., 
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2012; Kidd and Levizzani, 2011; Dinku et al., 2010).  Rather, the intent is to 

demonstrate how the availability and continuity of satellite-based precipitation data 

records is transforming the ways that scientific and societal issues related to 

precipitation are addressed, in ways that would not be otherwise possible.  These 

developments have taken place in parallel with the growth of an increasingly 

interconnected scientific environment.  Scientists from different disciplines can easily 

interact with each other via information and materials they encounter online, and 

collaborate remotely without ever meeting each other in person.  Likewise, these 

precipitation datasets are quickly and easily available via various data portals and are 

widely used.  Within the framework of the NASA/JAXA Global Precipitation 

Measurement (GPM) (Hou et. al, 2008) mission, these applications will become 

increasingly interconnected. 

 

We emphasize that precipitation observations by themselves provide an incomplete 

picture of the state of the atmosphere.  For example, it is unlikely that a richer 

understanding of the global water cycle will be possible by standalone missions and 

algorithms, but must also involve some component of data assimilation (Michaelides et 

al, 2009), where model analyses of the physical state are constrained alongside multiple 

observations (e.g., precipitation, evaporation, radiation).  The next section provides 

examples extracted from the many applications that use various high-resolution 

precipitation products.  The final section summarizes the future system for global 

precipitation processing.    

2. Applications 

Precipitation products are critical for the development of applications that address a 

variety of scientific and societal needs.  It is difficult to discuss precipitation 
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applications without proper consideration of the spatial and temporal scales of 

individual products, as well as their timeliness and veracity.  The applications described 

below are by no means an exhaustive list, but highlight the breadth of applications that 

have been developed through incorporation of satellite-based precipitation datasets. 

2.1 Flooding and Landslides 

Floods and landslides represent some of the most devastating hydrometeorological 

natural disasters on Earth, resulting in extensive economic damage and fatalities that 

affect nearly every country in the world. Despite their broad impacts, characterizing the 

frequency, severity, and occurrence of such events has been primarily limited to 

regional or local analyses due to the dearth of rainfall gauges and the spatial scale of 

existing landslide and flood models. Recent research has sought to use satellite rainfall 

estimates from TRMM to inform the spatial and temporal distribution of flooding and 

landslides at the global scale (Hong et al. 2006, 2007a, 2010). These modeling efforts 

provide the foundation for a better understanding of the behavior, variability, and 

potential forecast potential of floods and rainfall-triggered landslides. 

 

A global flood monitoring system initially developed by Hong et al. (2007b, 2010) and 

evaluated by Yilmaz et al. (2010) has been improved with a physically-based 

hydrological model (Wang et al. 2011). This Global Flood Monitoring system (GFMS) 

integrates TRMM Multi-Satellite Precipitation Analysis (TMPA) precipitation 

estimates, readily available geospatial datasets and a hydrological model running at a 

1/8th degree latitude-longitude resolution. A 12-year retrospective simulation is used to 

develop a grid of 95th percentile routed runoff that serves as a starting point for flood 

detection and monitoring (Figure 1). Evaluation of this improved GFMS system against 

a global flood event database (Wu et al. 2012) indicates a Probability of Detection 
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(POD) of ~0.7 and a False Alarm Rate (FAR) of ~0.6 for floods over three days in 

duration. The evaluation results also suggest that basins with large dams have 

significantly higher FAR values, indicating the need to take into account their effects. In 

a similar effort, JAXA has supported the development of the Global Flood Alert System 

(GFAS) to support flood forecasting and warning worldwide. The system is hosted by 

the International Flood Network (IFNet: http://gfas.internationalfloodnetwork.org/gfas-

web/), which provides global and regional rainfall maps of rainfall and rainfall 

exceedance for 5 and 10 year return periods.  Other regional and global flood modeling 

research studies (e.g., Lettenmaier et al. 2006, Pan et al. 2010) have focused on 

developing hydrologic model routing schemes to improve prediction of flood onset and 

dissipation.	
  	
  These	
  schemes	
  have	
  been	
  developed	
  and	
  tested	
  for	
  several basins in the 

U.S. and Africa. 

 

Rainfall-triggering landslide modeling activities have primarily utilized rainfall gauge 

information and can generally be divided into three categories: static approaches to 

characterize the spatial distribution of potentially susceptible areas; regional empirical 

approaches that evaluate the intensity and duration of rainfall in potentially triggering a 

landslide event; and site-specific deterministic approaches where a slope-stability model 

is applied to characterize the specific nature of landslide processes at the hillslope scale. 

A prototype landslide algorithm developed by Hong et al. (2006, 2007a) couples a static 

landslide susceptibility map with TMPA rainfall information to indicate areas that may 

be prone to landslides at the global scale. The algorithm is updated every three hours 

and provides landslide nowcasts from 50°N to 50°S at a 0.25° x 0.25° pixel resolution. 

Evaluation of this prototype system suggests that the current susceptibility map and 

rainfall thresholds employed show some skill (POD ranged from a maximum 22% for 
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1-day temporal window and minimum of 6% for 7-day temporal window for the two 

years evaluated) in identifying landslide-prone regions, but also serve to over or under 

estimate landslide nowcasting in several regions (Kirschbaum et al. 2009). Results also 

indicate that this system would be enhanced if precipitation characteristics of landslide-

triggering events are considered within different climatologic zones to better account for 

the variability of rainfall intensity and duration (Kirschbaum et al. 2011). The higher 

resolution precipitation observations and corresponding surface conditions would better 

resolve localized landslide hazards (e.g., topography, soil conditions) that are not 

observed in the coarse scale global landslide algorithm. 

 

In the abovementioned flood and landslide modeling approaches, the near real-time 

accessibility and global availability of the TRMM and future GPM products enables 

rapid hazard assessment and potential flood and landslide forecasting. Real-time 

products can be accessed at  

http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html.  While the 

current spatial resolution of the TRMM products generally restricts their application to 

the scale of the TRMM products (0.25° x 0.25°, 3-h), results indicate that using 

satellite-based precipitation products enables the characterization of flood and landslide 

hazards at the global scale, filling much needed gap in the hazard assessment 

community.  As the resolution of the precipitation products improve, the model 

resolution should also improve, providing better information of flood and landslide 

hazards at finer scales. 

2.2	
  Ensemble	
  Tropical	
  Rainfall	
  Potential	
  

Heavy rains associated with landfalling tropical cyclones frequently trigger floods that 

cause millions of dollars of damage and lost lives.  To provide observations-based 
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forecast guidance for tropical cyclone (TC) heavy rain, Kidder et al. (2005) developed 

the Tropical Rainfall Potential (TRaP), an extrapolation forecast generated by 

accumulating rainfall estimates from microwave sensors over a 24-hour period as the 

storm is translated along the forecast track.  TRaP aims to predict the maximum rainfall 

at landfall, as well as the spatial pattern of precipitation, and has been shown to have 

similar or better skill than short-range numerical weather prediction models (Ferraro et 

al. 2005, Ebert et al. 2005). 

 

One key aspect where satellite-based precipitation products excel is their relative skill in 

the location and timing of precipitation.  The issue of assimilating precipitation 

observations (or precipitation-affected satellite radiances) into weather prediction 

models is yet an open topic of investigation (Bauer et al., 2011).  A recent innovation 

has been to combine the TRaP forecasts from multiple sensors and various start times 

into an ensemble TRaP product known as eTRaP (Ebert et al. 2011). The ensemble 

approach provides not only more accurate quantitative precipitation forecasts, including 

more skilful maximum rainfall amount and location, it also produces probabilistic 

forecasts of rainfall exceeding various thresholds that decision makers can use to make 

critical risk assessments. Ebert et al. (2011) showed that eTRaP probabilistic forecasts 

have useful skill, but the grid-scale probabilities are biased high when compared to 

observations and should be interpreted in a broader spatial context.  Efforts to calibrate 

the probabilistic forecasts from eTRaP are underway.  Figure 2 shows an example of an 

eTRaP forecast for Typhoon Muifa as it passed south of Okinawa on 4 August 2011. It 

predicted 50% probability of exceeding 100 mm over northern Okinawa, with a 

maximum 24 h rainfall of about 300 mm. The measured 24 h rainfall at 12 UTC on 5 

August was 147.5 mm at Oku on the northern tip of Okinawa, and 313.5 mm at Nago in 
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the center of the island. While the location of the maximum rain in the eTRaP forecasts 

was spatially displaced by about 50 km, it would have provided useful guidance for 

forecasters and emergency managers. 

 

ETRaPs are computed four times daily for all named tropical cyclones and storms, and 

can be viewed at http://www.ssd.noaa.gov/PS/TROP/etrap.html.  

2.3	
  Global	
  high	
  resolution	
  terrestrial	
  surface	
  heat	
  and	
  moisture	
  flux	
  

estimates	
  

Evapotranspiration is one of the major fluxes in the hydrological cycle. The latent heat 

flux (LE) amounts to about 80 W m-2 (Trenberth et al. 2009) on global scale (ocean and 

land) and is therefore the largest single heat source for the atmosphere with high 

relevance in weather and global water cycle dynamics (Dirmeyer 2006). However, 

existing data sets of surface heat fluxes are still highly uncertain. The GEWEX 

LandFluxEval project focused on the comparison of a variety of different existing LE 

products over land. A spread of 20 W m-2 (sigma=5 W m-2) was identified between 

different existing datasets, with an all-product global mean value of 45 W m-2 for the 

land surface latent heat flux (Jimenez et al. 2011; Mueller et al. 2011). These 

uncertainties are comparably large when compared to global scale heat fluxes and 

correspond to roughly one-third of the annual global sensible heat flux of 17 W m-2 

(Trenberth et al., 2009).  

 

The availability of accurate global precipitation data is one major driver for an accurate 

determination of surface heat fluxes as it is major input for land surface models used to 

estimate surface heat fluxes. Currently, only satellite data can provide precipitation 
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estimates at the global scale with sufficient temporal resolution.  Miralles et al. (2011) 

used CMORPH (Joyce et al. 2004) and the Global Precipitation Climatology Program 

(GPCP) (Huffman et al. 2009) daily precipitation for the generation of a global dataset 

of evapotranspiration with a spatial resolution of 0.25 degrees. 

 

Borsche and Loew (2012) have analyzed the impact of using satellite based 

precipitation estimates for the estimation of surface latent heat fluxes using spatially and 

temporally high resolution geostationary satellite data for surface radiation fluxes and 

TMPA for precipitation estimates (Knapp et al. 2011). They analyzed the impact of 

replacing rain gauge based precipitation data by TMPA 3-hourly rainfall intensities 

(Huffman et al. 2007) for the estimation of surface latent heat fluxes through a series of 

experiments and validating the estimated surface heat fluxes by in situ measurements 

from FluxNet (Aubinet et al. 1999; Baldocchi 2008). Figure 3 shows the seasonal mean 

latent heat flux as estimated from geostationary observations using TMPA precipitation 

as forcing. Figure 4 shows the correlation and root-mean squared error (RMSE) of 

estimated and observed latent heat fluxes for 19 different FluxNet stations from 

different biomes using either only station data as a forcing or satellite based forcing. 

The RMSE is 56.8 and 63.6 W m-2 at hourly timescales for station and satellite based 

forcing respectively. At daily timescales the RMSE is 39.0 (43.1) W m-2 for station 

(satellite) forcing. While the errors for the satellite based LE estimates are slightly 

higher than for the station forcing, Borsche and Loew (2012) show that this increase in 

uncertainty is mainly due to uncertainties in the radiation forcing and less due to 

uncertainties in the available TMPA precipitation data. 
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A related application involves the close correspondence between soil moisture and 

precipitation.  Soil moisture controls the partitioning of precipitation into infiltration, 

surface runoff, and evaporation/ transpiration from land surfaces.  The precipitation 

time history also modulates the microwave surface emissivity, an important 

consideration for over-land precipitation estimation (Li et. al., 2010).  Comparisons of 

surface emissivity retrievals together with the previous-time precipitation totals are an 

indirect yet qualitative way to validate emissivity retrievals over rain-affected surfaces, 

and to devise improved over-land precipitation retrievals (Ferraro et al. 2012).  Another 

application that uses satellite precipitation products to compute representative land 

surface conditions (e.g., soil moisture) is the Modern-Era Retrospective Analysis for 

Research (MERRA) project (Reichle et. al, 2011), which is generated by the NASA 

Global Modeling and Assimilation Office (GMAO: http://gmao.gsfc.nasa.gov/).  

MERRA focuses on the assimilation of in situ and remote sensing data into numerical 

models to provide a representative global atmospheric (e.g., precipitation, temperature, 

humidity) and land surface dataset (e.g., soil moisture, snow, runoff).  The MERRA 

products are then used for a variety of applications such as the study of land surface 

water budgets including floods, droughts, soil moisture processes.  Having accurate 

satellite precipitation data increases the usefulness of datasets such as MERRA by 

reducing the uncertainty of the generated fields.   

2.4	
   Atmospheric	
  Aerosols	
  

Aerosol particles introduce one of the largest uncertainties in model-based estimates of 

direct and indirect forcing on climate.  Aerosol processes in models such as transport, 

source, and sinks typically reply on model-derived meteorology and are assimilated into 

operational aerosol prediction models (Zhang et al., 2008).  However, the processes are 

sensitive to errors in the underlying simulation that propagate through the system.  
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Precipitation, as one of the basic meteorological elements in an aerosol model, has a 

large effect on aerosol load since it is the primary sink.  It is expected that precipitation 

area coverage is more important than precipitation intensity in affecting model aerosol 

optical thickness (AOT), but a potential implication is that excessive light precipitation 

in models (Sun et al. 2006) may over-scavenge aerosol particles.   

 

Xian et al. (2009) found that light rain over large areas using the Navy Operational 

Global Atmospheric Prediction System (NOGAPS) forecast model removed 

significantly more aerosol particles than the more realistic heavy rain in small areas 

found in the NRL-Blend satellite precipitation product (Turk and Miller, 2005), even 

though the total precipitation was nearly the same in the two schemes.  Figure 5 shows 

the smoke AOT resulting from the use of the NRL-Blend precipitation in the tropics on 

the left, and the ratio of smoke AOT NRL-Blend run over NOGAPS run on the right for 

four burning seasons. When NRL-Blend precipitation is used instead of NOGAPS, 

smoke AOT in general increases in the tropics for all seasons including the least active 

burning period, November through January.  During February through April, which is 

the major burning period for peninsular Southeast Asia, the increase in AOT with the 

NRL-Blend run is about a factor of two on average, and up to 2.8 over Malaysia 

Peninsula.  Thus while on seasonal time scales current numerical models could 

approximately capture the real world precipitation pattern, there might exist differences 

in regional AOT due to differences in short time scale precipitation.  This could 

significantly affect wet deposition of aerosols, and thus modeled AOT in regions of 

convection.  Other short time scale problems, such as trying to infer aerosol 

concentrations in the vicinity of convective cells observed by satellite, may also be 

challenged by the model’s precipitation scheme.  Aerosol particles may be overly 
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scavenged out in the model by the time the air mass reaches the observed cell (Turk and 

Xian 2012). 

2.5	
   Model	
  assessment	
  and	
  validation	
  

Unlike prognostic variables such as temperature and moisture, precipitation is a 

diagnosed quantity in most weather and climate models. Owing to the methods whereby 

precipitation is triggered, it is not only important to verify model-derived precipitation 

quantitatively (Ebert et al., 2005), but also the capability of the model to place 

precipitation in the right place at the right time.  In this regard, satellite precipitation 

datasets are the pillars for validating the performance of numerical models such as 

Regional Climate Models (RCMs), which are dynamically downscaling tools used to 

improve the spatial resolution of outputs from reanalyses and Global Climate Models 

(GCM).  Over land, several studies have shown that RCMs provide consistent estimates 

of precipitation after accounting for known uncertainties in the reference data 

(Tapiador, 2010). Gauge data, such as the Climate Research Unit (CRU), GPCP, the 

Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP), and the 

Global Precipitation Climatology Center (GPCC) databases have been compared with 

RCM simulations over Europe both in terms spatially reproducing the climatology and 

the probability distributions of precipitation (Tapiador et al., 2009), and in terms of 

capturing the phase and power of precipitation cycles (Tapiador and Sánchez, 2008), 

obtaining consistent results. Such intercomparison / validation of RCMS is directly 

relevant for applications such as hydropower since RCMs outputs are used to gauge the 

future availability of water for this renewable energy (Tapiador 2009, Tapiador et al. 

2012).  
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Over the oceans, however, there are no or few rain gauges available, so satellite 

observations are needed to validate models. Measuring and modeling oceanic 

precipitation is important since this geophysical parameter is required for a full 

understanding of the Earth System, including the closure of the hydrological cycle. 

Comparisons of RCMs outputs with satellite-based databases (Figure 6) such as the 

GPCP (Adler et al., 2003) are instrumental to evaluate the performances of the RCMs 

over the oceans, and thus to improve the models. 

 

2.6	
   Societal	
  Impact	
  Monitoring	
  	
  

Soil moisture controls the partitioning of precipitation into infiltration and surface 

runoff, and satellite precipitation records provide observations to better understand the 

spatiotemporal link between precipitation and soil moisture.  Many of the same PMW 

sensors used for precipitation estimation can be adapted for use in estimating soil 

moisture and vegetation water content (Li et. al, 2010).  Soil moisture products are used 

to augment gauge sparse areas to improve short-term precipitation estimates (Crow et. 

al., 2009).  Satellite precipitation estimates have been critical for monitoring of drought 

in Africa where surface observations are sparse.  For example, Fig. 7 shows the 2011 

precipitation anomaly for March-April-May for the southern two-thirds of Africa 

compared to the 2000-2009 climatology.  The map shows areas that were prone to 

drought (e.g., East Africa) and or flooding (e.g., South Africa) during this period.  In a 

changing climate scenario, droughts are perhaps the less known part of the water cycle 

especially in those areas that are more exposed than others to the drought risk, such as 

the Horn of Africa (Lyon and De Witt, 2012). 
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To address the issues of water availability (or lack of) and predictions of future water 

scarcity in the context of global climate change, the project Global Water Monitoring 

Information Service (GLOWASIS) of the 7th Framework Programme of the European 

Commission uses satellite rainfall estimations for the hydrological monitoring and 

forecasting in the context of the Global Monitoring for Environment and Security 

(GMES) initiative (http://glowasis.eu/).  Because accurate estimates of water 

availability in remote areas such as Africa are difficult to obtain, but are critical for 

monitoring crop production and associated issues with food security, GLOWASIS has 

focused on improving the quantification of errors in water budget components, global 

models and space-based global precipitation measurements. This effort is in attempt to 

increase the accuracy of monthly forecasts of water availability.  The GLOWASIS 

project is attempting to meet the challenges of addressing the monitoring water 

availability by combining models with observations (e.g., satellite precipitation 

products) through improved algorithms.  These resources are available to regional 

decision makers through open access to the products.  The GLOWASIS project is one 

example of an application the requires satellite precipitation products to improve the 

monitoring to help improve in the preparation of regional to global impacts on society 

such as droughts and floods. 

3. Conclusions 

This article has highlighted several cross-disciplinary Earth system science 

investigations that have been advanced through the availability of consistent global 

precipitation records.  An increasing number of applications are dependent upon the 

availability of near real-time information that may not be science-quality data; others 

require science-quality data records that are hosted by distributed data archive centers.  

The planned and future satellite missions are critical for the continued advancement of 
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precipitation products and subsequently, applications that utilize the precipitation 

products.  These new satellite missions will overlap with existing satellite missions to 

provide consistent, long-term data records. 

 

The global constellation of Earth observing systems for precipitation is constructed with 

a variety of instruments, low Earth orbiting microwave imagers and sounders, radar, and 

geostationary Earth orbiting imagers.  Community efforts such as the Global Satellite 

Intercomparison (GSICS; Goldberg et al. 2011) are imperative to establish self-

consistent data records across satellite lifetimes, sensor revisions, etc.   The space-based 

precipitation observing system was recently enhanced by the deployment of the joint 

French National Space Study Center (CNES) and Indian Space Research Organization 

(ISRO) Megha-Tropiques satellite (orbiting asynchronously in a 20-degree inclination), 

the first of an advanced microwave sounder (ATMS) onboard the Suomi National Polar 

Orbiting Partnership (NPP) spacecraft, JAXA’s Global Change Observing Mission 

(GCOM-W), and the Chinese Meteorological Agency (CMA) FY-3 series.  Currently, 

TRMM is well beyond its expected life but will continue to collect observations until it 

exhausts is station-keeping fuel supply (largely determined by the solar cycle), after 

which it will begin its gradual deorbit.  However, there is a possibility that TRMM will 

overlap with the upcoming (2014) GPM mission, providing an opportunity for a 

seamless, longterm data record.  The core GPM spacecraft will deploy an advanced 

dual-frequency (Ku/Ka-band) precipitation radar (DPR) orbiting at a 65-degree orbit 

inclination, providing coverage at high latitudes not overflown by by TRMM for 

estimation of snowfall and light precipitation.  The GPM core satellite will be joined by 

NASA’s Soil Moisture Active Passive (SMAP) satellite in 2015, enabling 
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complementary measurements and synergistic analyses between surface soil moisture 

state and precipitation (Entekhabi et al., 2010). 

 

A future global precipitation processing system will likely encompass multiple satellite 

sensors (active and passive), ground observations and radar networks to obtain 

improved spatial and temporal resolution with reduced uncertainties.  For example, 

flash flood guidance systems need short time scale, high resolution precipitation fields, 

especially in remote regions, to improve flash flood forecasting on a basin scale.  

Societal applications such as drought monitoring, soil moisture/crop monitoring, and 

health monitoring (e.g., meningitis outbreaks in Africa) can benefit from satellite 

precipitation datasets.  Large-scale applications such as regional climate modeling will 

benefit from the higher resolution precipitation data when evaluating potential climate 

impacts at a regional scale. 
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Figure 1:  Water depth over 95th percentile of 12-year simulation of routed runoff as 
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from station forcing (left) and satellite forcing (right) using different FluxNet stations as 
a reference. Different colors correspond to different temporal aggregation (Borsche and 
Loew, 2012). 
 
Figure 5: Left: Smoke AOT resulted from NRL-blend precipitation for four biomass 
burning periods in 2007. Right: Ratio of smoke AOT resulted from NRL-blend 
precipitation over smoke AOT resulted from NOGAPS precipitation for four biomass 
burning periods in 2007 (colored for regions with AOT > 0.05 in NRL-blend run) (Xian 
et al. 2009). 
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(RCMs, 0.5º resolution) with a satellite-based observational database (GPCP, 2.5º 
resolution) over Europe, for present-day climatologies. The difference plots (third 
column) illustrate the contrasting performances of the RCMs depending on season and 
on location. Note the different spatial resolution of the data, which affects maxima and 
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Figure 7: African 2011 March-April-May (MAM) rainfall anomaly relative to 2000-
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Figure 1:  Water depth over 95th percentile of 12-year simulation of routed runoff as 
initial indicator of flooding in Global Flood Monitoring System. Example of real-time 
results for Australian floods in January 2011. 
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Figure 2:  ETRaP forecast of (a) probability of 24 h precipitation exceeding 100 mm, 
and (b) 24 h rain accumulation in Typhoon Muifa, valid at 12 UTC on 5 August 2011 
ETRaPs are computed four times daily for all named tropical cyclones and storms, and 
can be viewed at http://www.ssd.noaa.gov/PS/TROP/etrap.html. 
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Figure 3: Seasonal (JJA) high resolution (5 km) mean latent heat derived from 
geostationary satellite data using TMPA precipitation data. Blue circles correspond to 
FluxNet stations shown in Figure 4 (Borsche and Loew 2011).  
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Figure 4: Multiannual RMSE difference and correlation of latent heat flux obtained 
from station forcing (left) and satellite forcing (right) using different FluxNet stations as 
a reference. Different colors correspond to different temporal aggregation (Borsche and 
Loew 2012). 
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Figure 5: (Left) Smoke AOT resulted from NRL-blend precipitation for four biomass 
burning periods in 2007. (Right) Ratio of smoke AOT resulted from NRL-blend 
precipitation over smoke AOT resulted from NOGAPS precipitation for four biomass 
burning periods in 2007 (colored for regions with AOT > 0.05 in NRL-blend run) (Peng 
et al. 2009). 
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Figure 6: Comparison of the ensemble average of eight Regional Climate Models 
(RCMs, 0.5º resolution) with a satellite-based observational database (GPCP, 2.5º 
resolution) over Europe, for present-day climatologies. The difference plots (third 
column) illustrate the contrasting performances of the RCMs depending on season and 
on location. Note the different spatial resolution of the data, which affects maxima and 
minima.   
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Figure 7: African 2011 MAM rainfall anomaly relative to 2000-2009 climatology. 
 

 


