
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2016

Polarization of macrophages toward M2 phenotype
is favored by reduction in iPLA2β (group VIA
phospholipase A2)*
Jason W. Ashley
Eastern Washington University

William D. Hancock
University of Alabama, Birmingham

Alexander J. Nelson
University of Alabama, Birmingham

Robert N. Bone
Indiana University at Indianapolis

Hubert M. Tse
Indiana University at Indianapolis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Ashley, Jason W.; Hancock, William D.; Nelson, Alexander J.; Bone, Robert N.; Tse, Hubert M.; Wohltmann, Mary; Turk, John; and
Ramanadham, Sasanka, ,"Polarization of macrophages toward M2 phenotype is favored by reduction in iPLA2β (group VIA
phospholipase A2)*." The Journal of Biological Chemistry.291,44. 23268-23281. (2016).
https://digitalcommons.wustl.edu/open_access_pubs/5509

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Becker

https://core.ac.uk/display/74358337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5509&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Authors
Jason W. Ashley, William D. Hancock, Alexander J. Nelson, Robert N. Bone, Hubert M. Tse, Mary
Wohltmann, John Turk, and Sasanka Ramanadham

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/5509

https://digitalcommons.wustl.edu/open_access_pubs/5509?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5509&utm_medium=PDF&utm_campaign=PDFCoverPages


Polarization of Macrophages toward M2 Phenotype
Is Favored by Reduction in iPLA2� (Group VIA
Phospholipase A2)*
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Macrophages are important in innate and adaptive immunity.
Macrophage participation in inflammation or tissue repair is
directed by various extracellular signals and mediated by multi-
ple intracellular pathways. Activation of group VIA phospho-
lipase A2 (iPLA2�) causes accumulation of arachidonic acid,
lysophospholipids, and eicosanoids that can promote inflam-
mation and pathologic states. We examined the role of iPLA2�
in peritoneal macrophage immune function by comparing wild
type (WT) and iPLA2��/� mouse macrophages. Compared with
WT, iPLA2��/� macrophages exhibited reduced proinflamma-
tory M1 markers when classically activated. In contrast, anti-
inflammatory M2 markers were elevated under naïve conditions
and induced to higher levels by alternative activation in
iPLA2��/� macrophages compared with WT. Induction of
eicosanoid (12-lipoxygenase (12-LO) and cyclooxygenase 2
(COX2))- and reactive oxygen species (NADPH oxidase 4
(NOX4))-generating enzymes by classical activation pathways
was also blunted in iPLA2��/� macrophages compared with
WT. The effects of inhibitors of iPLA2�, COX2, or 12-LO to
reduce M1 polarization were greater than those to enhance M2
polarization. Certain lipids (lysophosphatidylcholine, lysophos-
phatidic acid, and prostaglandin E2) recapitulated M1 pheno-
type in iPLA2��/� macrophages, but none tested promoted M2
phenotype. These findings suggest that (a) lipids generated by
iPLA2� and subsequently oxidized by cyclooxygenase and
12-LO favor macrophage inflammatory M1 polarization, and (b)

the absence of iPLA2� promotes macrophage M2 polarization.
Reducing macrophage iPLA2� activity and thereby attenuating
macrophage M1 polarization might cause a shift from an inflam-
matory to a recovery/repair milieu.

Macrophages are important in inflammation. These mono-
nuclear myeloid hematopoietic lineage cells contribute to both
innate and adaptive immunity (1). In the innate immune
response, macrophages phagocytose invading pathogens and
modulate recruitment and activation of inflammatory cells
with secreted factors such as tumor necrosis factor � (TNF�)
and prostaglandin E2 (PGE2)3 (2, 3). Macrophages facilitate
adaptive immunity primarily as antigen-presenting cells (4).
Phagocytosed proteins processed into small fragments can be
presented to CD4� T cells via the major histocompatibility
class II receptor (MHC II) (5). The critical role of macrophages
in initiation and resolution of infection can be observed in mod-
els of macrophage depletion; in cases of macrophage insuffi-
ciency, experimental mice have an increased susceptibility to
infection, and existing infections progress further than in mac-
rophage-sufficient animals (6). Macrophages also contribute to
the pathogenesis of cancer progression, rheumatoid arthritis,
diabetes, and atherosclerosis; macrophages are thus targets of
emerging therapeutic regimens (7–10).

Macrophages also participate in autoimmune-mediated
destruction of �-cells and type 1 diabetes (T1D). In diabetes-
prone individuals, immune cells including macrophages
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kines and reactive oxygen species (ROS) that result in �-cell
death (11). Two different activation states of macrophages have
been described: M1 proinflammatory macrophages (12), which
are classically activated (e.g. by interferon-� (IFN�), lipopoly-
saccharide (LPS), TNF�), and M2 macrophages, which are
alternatively activated (e.g. by IL-4 or IL-10) (13). Whereas M1
macrophages are recognized causative factors in T1D develop-
ment (14), M2 macrophages appear to protect against T1D (15).
Recent studies suggest that ROS can modulate macrophage
polarization and that reduction in ROS generation promotes an
M2 macrophage phenotype, blunts M1 macrophage pheno-
type, and dramatically delays T1D onset (16).

Lipid signaling is increasingly recognized to modulate
inflammation and immune responses (17). Phospholipases A2
(PLA2s) are important in generating lipid mediators and
include secretory PLA2 (sPLA2), cytosolic (cPLA2), and Ca2�-
independent cytosolic (iPLA2�) and membrane-associated
(iPLA2�) (18) enzymes. The PLA2s hydrolyze the sn-2 substit-
uent from membrane phospholipids to generate a free fatty acid
and a 2-lysophospholipid. The fatty acid arachidonic acid can
be further metabolized by cyclooxygenases (COXs) and lipoxy-
genases (LOs) to generate bioactive eicosanoids that include
prostaglandins and leukotrienes (19). Several eicosanoids are
proinflammatory and linked to macrophage phagocytosis,
adhesion, apoptosis, and amplification of macrophage-derived
eicosanoid release (20 –23). Lysophospholipids (24) generated
by PLA2s (e.g. lysophosphatidic acid (LPA)) are implicated in
monocyte survival and migration (25–27).

Expression of iPLA2� is elevated in pancreatic islets from
diabetic subjects and rodent models of diabetes (28, 29).
Stresses (endoplasmic reticulum, proinflammatory cytokines,

oxidative) associated with T1D development that cause �-cell
death also increase iPLA2� expression, and genetic or pharma-
cologic reduction of iPLA2� activity ameliorates �-cell apopto-
sis (30 –35). We recently reported that immune cells, including
CD4� T- and B-lymphocytes, express iPLA2�, and selective
inhibition of iPLA2� reduces immune responses and leukocyte
infiltration of islets, preserves �-cell mass, and lowers T1D (29).
Macrophages also express iPLA2� (23, 29), and its activation
was recently reported to regulate ROS production from macro-
phages exposed to diabetic metabolic stress (36). The potential
impact of iPLA2�-derived lipid signals in affecting macrophage
phenotype has not previously been addressed.

We have examined this using iPLA2��/� and wild type (WT)
mouse peritoneal macrophages and report here that iPLA2�
deficiency reduces macrophage expression of eicosanoid and
ROS-generating enzymes and favors M2 over M1 macrophage
phenotypic polarization. These findings suggest that genetic or
pharmacologic reduction of iPLA2� activity could reduce
inflammation and delay disease progression by shifting macro-
phage polarization away from proinflammatory and toward an
alternatively activated phenotype, thereby reducing proinflam-
matory lipid and ROS signal generation.

Results

PLA2 Expression in Macrophages—PLA2s are ubiquitously
expressed and activated in inflammatory settings (17, 37, 38),
and as expected, iPLA2� and cPLA2 mRNA species increase
during macrophage differentiation from their bone marrow-
derived precursors (Fig. 1A). Analogously, mRNA species
encoding iPLA2� (Fig. 1B), iPLA2� (Fig. 1C), and cPLA2 (Fig.
1D) are evident in already differentiated WT naïve peritoneal

FIGURE 1. Phospholipases A2 expression in naïve, M2, and M1 macrophages. RNA was isolated from macrophages, and cDNA was prepared for RT-qPCR
analyses. A, expression of PLA2 messages in differentiating macrophages. *, significantly different from corresponding 0 day, p � 0.05. B–D, mRNA expression
in peritoneal macrophages after classical (IFN� � LPS) or alternative (IL-4) activation. RNA was isolated from the macrophages, cDNA was prepared for RT-qPCR
analyses, and data are the means � S.E. generated from 4 –11 independent measurements. B, iPLA2� (*, iPLA2��/� group significantly different from corre-
sponding WT, p � 0.05). C, iPLA2�. D, cPLA2� (*, significantly different from corresponding naïve group, p � 0.05).
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macrophages. As expected, macrophages from iPLA2��/�

mice did not express iPLA2� mRNA (Fig. 1B), but their expres-
sion of iPLA2� (Fig. 1C) and cPLA2 (Fig. 1D) mRNA was similar
to WT. Neither classical nor alternative activation with IFN� �
LPS and IL-4, respectively, increased expression of iPLA2�
mRNA in WT macrophages (Fig. 1B), and iPLA2� expression
with activation was similar between the two genotypes (Fig.
1C). In contrast, cPLA2 expression was increased under both
classical and alternative activation, but its induction was similar
between WT and iPLA2��/� macrophages (Fig. 1D).

M1 Phenotype Markers in Peritoneal Macrophages—To
examine the impact of iPLA2� on polarization of macrophages
toward the M1 phenotype, macrophages were treated with
IFN� � LPS, total RNA was isolated, and cDNA was prepared
for real-time quantitative PCR (RT-qPCR) analyses of various
recognized markers of M1 macrophage phenotype. These
included Arg2, CCL5, CD68, CXCL10, iNOS, STAT1, and
TNF�. Of these, only Arg2 was significantly different between
the two genotypes (Fig. 2A) under naïve conditions. After clas-
sical activation, CCL5, CD68, CXCL10, STAT1, and TNF� did
not differ significantly between the two genotypes (data not
shown). However, robust increases in Arg2 (Fig. 2B), iNOS (Fig.
2C), and TNF� (Fig. 2D) in WT peritoneal macrophages were
evident. In contrast, induction of all three was blunted in the
iPLA2��/� group.

Although Arg1 is recognized as an M2 macrophage marker,
there is controversy regarding whether Arg2 is pro- or anti-

inflammatory (39 – 41). Our analyses revealed (Fig. 3) Arg1
induction in WT peritoneal macrophages with alternative, but
not classical activation. In contrast, Arg2 was induced by clas-
sical, but not alternative activation. These observations led us to
suggest that Arg2 is associated with an M1 macrophage pheno-
type in our study model. Collectively, these findings suggest
that iPLA2� deficiency mitigates polarization of macrophages
toward an M1 phenotype.

FIGURE 2. M1 markers in peritoneal macrophages from WT and iPLA2��/� mice. Macrophage RNA was isolated under naïve conditions and after classical
activation, and cDNA was prepared for RT-qPCR analyses of M1 markers. A, naïve conditions. -Fold expression of each marker, relative to WT naïve, is presented.
*, iPLA2��/� group significantly different from corresponding WT, p � 0.05. B, Arg2. C, iNOS. D, TNF�-fold induction by IFN� � LPS relative to their own naïve
conditions is presented. †, iPLA2��/� significantly different from WT, p � 0.005. Data are the means � S.E. (n � 7–11 independent measurements).

FIGURE 3. Effects of activation on Arg1 and Arg2 in WT peritoneal macro-
phages. Macrophage RNA was isolated under naïve conditions and after activa-
tion, and cDNA was prepared for RT-qPCR analyses for Arg1 and Arg2. -Fold
expression of each, relative to corresponding naïve, is presented. Data are the
means � S.E. (n � 7–11 independent measurements). * and †, significantly differ-
ent from corresponding naïve group, p � 0.0005, and p � 0.00005, respectively.
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M2 Phenotype Markers in Peritoneal Macrophages—Next,
we examined whether iPLA2� expression influenced polariza-
tion of macrophages toward the M2 phenotype. Macrophages
were treated with IL-4 and processed for RT-qPCR analyses
of various M2-related markers. These included Arg1, CCL2,
RELA, STAT6, CHIL3, NF-�B1, MRC1, and RETNLA. Under
naïve conditions, NF-�B1, MRC1, and RETNLA were un-
changed, and CHIL3 decreased in the iPLA2��/� group relative
to WT group (Fig. 4A). However, Arg1, CCL2, RELA, and
STAT6 were significantly higher in the iPLA2��/� group rela-
tive to the WT group. Furthermore, under M2 polarizing con-
ditions induction of MRC1, NF-�B1, RELA, and STAT6 was
significantly higher in the iPLA2��/� group, relative to WT
group (Fig. 4B). These findings suggest that the M2 phenotype
is predominant with iPLA2��/� macrophages.

ALOX-12 (12-LO) and PTGS2 (COX2) Expression in Perito-
neal Macrophages—Induction of lipid-metabolizing enzymes
and the corresponding accumulations of eicosanoids have been
reported at the onset of insulitis and initial stages of diabetes
(42– 45). Consistent with this, we find that both ALOX-12 (Fig.
5A) and PTGS2 (Fig. 5B), which metabolize arachidonic acid to
generate various oxidized lipids, are induced by classical but not
alternative activation in the WT macrophages. We, therefore,
compared expression of ALOX12 (12-LO) and PTGS2 (COX2)
in macrophages from WT and iPLA2��/� mice. Under naïve
conditions there was no statistical difference in ALOX12
mRNA, but PTGS2 mRNA was significantly higher in the
iPLA2��/� group (Fig. 6A). However, under classical activation
conditions, there were dramatic increases in both ALOX12, and
PTGS2 mRNA in the WT group (Fig. 6, B and C). In compari-
son, induction of both was markedly blunted in the iPLA2��/�

group. These findings suggest that downstream generators of

proinflammatory lipid signals are subject to modulation by
iPLA2� expression.

Effects of iPLA2�, COX, and 12-LO Inhibitors on M1
Markers—In view of the observed decreases in M1 markers
and eicosanoid-generating enzymes in macrophages from
iPLA2�-KO mice, it was of interest to determine which path-
way influenced M1 polarization. To address this, macrophages
from WT mice were classically activated in the absence and
presence of inhibitors of iPLA2� ((S)-bromoenol lactone
(S-BEL)), COX (indomethacin), or 12-LO (cinnamyl-3,4-dihy-
droxy-�-cyanocinnamate (CDC)), and select M1 markers were
assessed. As expected, in the presence of IFN� � LPS, both
Arg2 (Fig. 7A) and iNOS (Fig. 7B) mRNA were dramatically
increased, and such increases were significantly inhibited by all
three inhibitors. At the protein level, media accumulation of
TNF� (Fig. 8A) and IL-1� (Fig. 8B) were increased by activa-
tion. Although S-BEL and indomethacin inhibited TNF� pro-
duction by the macrophages, CDC had no effect (Fig. 8A). IL-1�
accumulation was modestly decreased by S-BEL and CDC
(�25%, p � 0.1) but was significantly inhibited by indometha-
cin (Fig. 8B). In contrast, IL-12, which was also increased by
activation, was not affected by any of the inhibitors (data not
shown). Furthermore, media accumulation of nitrite, a spon-
taneous oxidized product of iNOS-generated nitric oxide,
which was markedly increased by activation in WT perito-
neal macrophages (Fig. 8C), was inhibited by both S-BEL and
indomethacin. Consistently, supplementation of the media
during activation of macrophages from iPLA2��/� mice
with PGE2, lysophosphatidylcholine (LPC), or LPA, but not
arachidonic acid, significantly elevated nitrite levels in the
media (Fig. 8D). In agreement with these observations,
endogenous LPA content is lower in macrophages from
iPLA2��/� mice compared with WT (Fig. 8, E and F). These
findings suggest that some, but not all, M1 markers are
impacted by iPLA2� activation and subsequent generation of
COX-derived lipid species.

Effects of iPLA2�, COX, and 12-LO Inhibitors on M2
Markers—To assess the impact of eicosanoid-generating
enzymes on eliciting an M2 phenotype, the effects of S-BEL,
indomethacin, and CDC on select M2 markers (Arg1, MRC1,
STAT6, CCL2) in the absence and presence of alternative acti-
vation were examined in WT peritoneal macrophages. In gen-
eral, the inhibitors alone had no effect on M2 mRNA markers;
however, S-BEL alone increased both STAT6 and CCL2. Unlike
their impact on M1 markers, the profile of M2 markers with
activation in the presence of the inhibitors was variable.
Although all were stimulated by IL-4, none of the inhibitors had
an effect on Arg1 (Fig. 9, A and E). MRC1 was inhibited by
S-BEL and CDC (Fig. 9B) but was increased by indomethacin
(Fig. 9F). STAT6 mRNA was increased by all three inhibitors
(Fig. 9, C and G). CCL2 was increased by S-BEL (Fig. 9D),
decreased by CDC (Fig. 9D), and unchanged by indomethacin
(Fig. 9H). At the protein level, TGF� (Fig. 10A) and IL-10 (Fig.
10B) production were increased by IL-4. Whereas TGF� was
further increased in the presence of S-BEL, neither indometh-
acin nor CDC had any effect. None of the inhibitors had an
effect on IL-10 production (Fig. 10B). Moreover, supplementa-
tion of media provided to iPLA2��/� macrophages with indi-

FIGURE 4. M2 markers in peritoneal macrophages from WT and
iPLA2��/� mice. Macrophage RNA was isolated under naïve conditions and
after alternative activation, and cDNA was prepared for RT-qPCR analyses. A,
naïve conditions. -Fold expression of each marker relative to WT naïve is pre-
sented. B, -fold induction by IL-4 relative to their own naïve conditions is
presented. Data are the means � S.E. (n � 7–11 independent measurements).
*, †, and #, iPLA2��/� group significantly different from corresponding WT,
p � 0.05, p � 0.01, and p � 0.001, respectively.
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vidual lipid species did not promote significant increases in any
of the M2 mRNA markers (data not shown). These findings
suggest that although some of the M2 marker expression is

impacted by iPLA2� activation, not all are, which raises the
possibility that other PLA2s or lipid species, not tested, contrib-
ute to their expression.

FIGURE 5. Effects of activation on ALOX12 (12-LO) and PTGS2 (COX2) in WT peritoneal macrophages. Macrophage RNA was isolated under naïve
conditions and after activation, and cDNA was prepared for RT-qPCR analyses. A, ALOX12. B, PTGS2. -Fold expression of each marker, relative to corresponding
naïve, is presented. Data are the means � S.E. (n � 7–11 independent measurements). * and †, significantly different from other groups, p � 0.05 and p �
0.0001, respectively.

FIGURE 6. ALOX12 (12-LO) and PTGS2 (COX2) in naïve and activated WT and iPLA2��/� peritoneal macrophages. Macrophage RNA was isolated under
naïve conditions and after classical activation, and cDNA was prepared for RT-qPCR analyses. Data are the means � S.E. (n � 7–11 independent measurements).
A, naïve conditions. -Fold expression of each marker relative to WT naïve is presented. *, significantly different from WT group, p � 0.05. B, ALOX12. C, PTGS2.
-Fold induction by IFN� � LPS relative to its own naïve conditions is presented. †, significantly different from WT group, p � 0.0005.

FIGURE 7. Effects of inhibitors of lipid-metabolizing enzymes on M1 markers in peritoneal macrophages. Macrophages from WT mice were treated as in
Fig. 2 in the absence or presence of S-BEL (B, 1 �M), indomethacin (I, 50 �M), or CDC (C, 1 �M) before message analyses for Arg2 (A) and iNOS (B). Data are the
means � S.E. (n � 4 –13 independent measurements). #, significantly different from DMSO control (Con), p � 0.001; * and †, significantly different from
IFN��LPS control, p � 0.05, p � 0.01; ND, not determined.
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Feedback Modulation between ROS and iPLA2�—Recently,
macrophage migration was reported to be promoted by iPLA2�
via induction of NOX4 (36). We find that under naïve condi-
tions, NOX4 is reduced by 50% in iPLA2��/� relative to WT
peritoneal macrophages (Fig. 11A), Furthermore, even in the
presence of classical activation with IFN� � LPS, NOX4 was
70% lower in iPLA2��/�, relative to WT macrophages. These
findings, taken together with nitrite accumulation presented
in Fig. 8, C and D) suggest that downstream generators of
proinflammatory ROS are subject to modulation by iPLA2�.
Consistently, we find that relative to immunodeficient and
diabetes-resistant non-obese diabetic (NOD) Rag mice (29),
iPLA2� is increased in islets from diabetes-prone NOD mice
but not in islets from NOD mice that are deficient in NOX-
derived superoxide (NOD.Ncf1m1J) (Fig. 11B). These mice

exhibit a marked delay in developing T1D relative to NOD
mice (16). These findings suggest an additional component
in the inflammatory process, wherein feedback regulation of
iPLA2� involves ROS.

Discussion

In their role as immune cells, macrophages demonstrate
remarkable diversity and plasticity. In addition to acting as
phagocytic and antigen-presenting cells, macrophages can pro-
mote or modulate inflammation through classical and alterna-
tive activation pathways, respectively (46). Under different
stimuli, macrophages produce multiple lipid mediators includ-
ing lysophospholipids and eicosanoids, and these bioactive lip-
ids can impact cells of surrounding tissues and the function of
macrophages themselves (20, 36, 47). A major source of lyso-

FIGURE 8. Modulation of M1-related factors by inhibitors of lipid-metabolizing enzymes and evidence for involvement of PGE2 in peritoneal macro-
phages. Aliquots of media collected from macrophages treated in Fig. 7 were used for ELISAs for TNF� (�), IL-1� (B), and nitrite (C). #, significantly different from
DMSO control (Con), p � 0.001; *, significantly different from IFN��LPS control, p � 0.05, p � 0.01; †, significantly different from IFN��LPS control, p � 0.01.
D, nitrite generated by classically activated iPLA2��/� peritoneal macrophages in the absence or presence of arachidonic acid (AA, 0.5 �M), PGE2 (1 �M), LPC (10
�M), or LPA (1 �M). #, significantly different from DMSO Con, p � 0.001. †, significantly different from IFN� � LPS control and �arachidonic acid, p � 0.01; ND,
not determined. E, MS/MS analyses of lysophosphatidic acid by multiple reaction monitoring. F, quantification of LPA molecular species in macrophages. *,
significantly different from WT, p � 0.05. Data are the means � S.E. (n � 3– 4 independent measurements). B, S-BEL; I, indomethacin; C, CDC.
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phospholipids and arachidonic acid, the common eicosanoid
precursor, is the lipase activity of PLA2s (19).

The family of PLA2s has been implicated in inflammatory
responses and contribution to onset and/or progression of auto-
immune-mediated disease (48, 49), and iPLA2� has recently been
linked to diabetes (29). Many components of the immune system,
including macrophages (50–54), monocytes (55), neutrophils (56,
57), mast cells (58), and T-cells and B-cells (59), express iPLA2�
activity. Among its proposed roles in macrophages, iPLA2� has

been implicated in playing a major role in free fatty acid accumu-
lation in macrophages (60–63) leading to apoptosis. iPLA2�, but
not cPLA2, has also been reported to promote macrophage prolif-
eration (37). Furthermore, iPLA2� appears to be required for
maintenance of macrophage spreading and adhesion (64), which
would contribute to inflammation by increasing macrophage
retention at inflammation sites (22).

In view of the evidence for iPLA2� involvement in inflamma-
tory processes related to macrophages and the recent reports

FIGURE 9. Effects of inhibitors of lipid-metabolizing enzymes on M2 markers in peritoneal macrophages. Macrophages from WT mice were treated as in
Fig. 4 in the absence or presence of S-BEL (B, 1 �M), indomethacin (I, 50 �M), or CDC (C, 1 �M) before mRNA analyses for Arg1 (A and E), MRC1 (B and F), STAT6 (C
and G), CCL2 (D and H). #, significantly different from DMSO control (Con), p � 0.001; †, significantly different from IL-4 Con, p � 0.05, p � 0.01; ND, not
determined. Data are the means � S.E. (n � 3–13 independent measurements.)
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that iPLA2� activation contributes to ROS generation by
macrophages (36) and ROS influence macrophage polarization
(16), we explored the impact of iPLA2� on macrophage func-
tion and polarization. We find that iPLA2� activation (a)
participates in determining the direction of macrophage polar-
ization and (b) modulates downstream expression of eico-
sanoid- and ROS-generating enzymes.

To explore the potential role of iPLA2� on macrophage acti-
vation, peritoneal macrophages from WT and iPLA2��/� mice
were treated with IFN� � LPS, which stimulates classical (M1)
macrophage activation or with IL-4, which stimulates alterna-
tive (M2) macrophage activation. The absence of iPLA2� in the
iPLA2��/� preparations was verified by PCR analyses, which
also revealed that neither classical nor alternative activation
induce iPLA2� mRNA in WT macrophages. The absence of
iPLA2� also did not alter activated macrophage morphology
(data not shown).

For the purpose of identifying susceptibility of peritoneal
macrophage polarization to iPLA2� activation, we used various
analyses to compare expression of multiple recognized markers
of M1 (Arg2, CCL5, CD68, CXCL10, iNOS, NOX4, STAT1, and
TNF� mRNA; TNF�, IL-1�, and IL-12 protein; nitrite accumu-
lation) and M2 (Arg1, CCL2, RELA, STAT6, CHICL3, NF-�B1,
MRC1, and RETNLA mRNA; TGF� and IL-10 protein) macro-
phage phenotype (13, 16).

Under naïve conditions Arg2 was higher in the iPLA2��/�

macrophages, but all other M1 markers examined were similar

between WT and iPLA2��/� macrophages. However, induc-
tion of Arg2, iNOS, and NOX4 by classical activation was signif-
icantly blunted in iPLA2��/� macrophages. In contrast, several
M2 markers (Arg1, CCL2, RELA, STAT6) were elevated under
naïve conditions in iPLA2��/� macrophages, and induction of
MRC1, NF-�B1, RELA, and STAT6 with alternative activation
was significantly greater in the absence of iPLA2�. These find-
ings suggest that iPLA2�-derived lipids promote macrophage
polarization favoring an M1 macrophage phenotype.

Arginase (Arg) and iNOS are predicted to exert contrary
effects with respect to macrophage function (65). iNOS gener-
ates nitric oxide from the amino acid arginine, and Arg inhibits
nitric oxide synthesis by reducing available arginine via conver-
sion to ornithine and urea (66). However, there are two iso-
forms of arginase that are encoded by different genes (67): Arg1,
which is cytoplasmic, and Arg2, which is mitochondrial.
Macrophages express both Arg1 and Arg2 (39), and although
Arg1 is an established marker of M2 macrophage anti-inflam-
matory functionality (68), the role of Arg2 is controversial. Both
pro (39)- and anti-inflammatory (40) consequences have been
linked with Arg2 expression. A recent report used genetic
approaches to demonstrate a proinflammatory role of Arg2 in
the development of type 2 diabetes (T2D) and atherosclerosis
(41). Our findings of higher Arg1 and blunted induction of Arg2
in the iPLA2��/�, relative to WT macrophages support the
possibility that Arg2 is a proinflammatory marker under classi-
cal activation conditions, as might exist in an in vivo inflamma-

FIGURE 10. Modulation of M2 marker proteins by inhibitors of lipid-metabolizing enzymes. Aliquots of media collected from WT macrophages treated in
Fig. 7 were used for ELISAs for TGF� (A) and IL-10 (B). #, significantly different from DMSO control (Con), p � 0.05; †, significantly different from both controls,
p � 0.05; ND, not determined. Data are the means � S.E. (n � 3– 4 independent measurements. B, S-BEL; I, indomethacin; C, CDC.)

FIGURE 11. Feedback modulation between ROS and iPLA2�. A, macrophage RNA was isolated under naïve conditions and after classical activation, and
cDNA was prepared for RT-qPCR analyses of NOX4. -Fold induction relative to WT is presented. Data are the means � S.E. (n � 7–11 independent measure-
ments). *, significantly different from WT, p � 0.01. B, pancreatic islets were isolated from 7-week-old female immunodeficient NOD.Rag, diabetes-prone NOD
and NOX-derived superoxide-deficient NOD (NOD.Ncf1m1j) mice. RNA was isolated, and cDNA was used in RT-qPCR analyses of iPLA2�. The means � S.E. of -fold
expression relative to NOD.Rag are presented. †, significantly different from the other groups, p � 0.05, n � 3.
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tory milieu such as T1D. Consistent with a proinflammatory
role of Arg2, we find that it is induced under classical activation
but not alternative activation, suggesting that it is associated
with an M1 macrophage phenotype in our study system.

Collectively, these observations suggest that iPLA2� defi-
ciency disfavors M1 macrophage polarization. Because the
products of PLA2 catalysis are substrates for various oxyge-
nases, we sought to identify contribution of specific eicosanoid-
generating pathways and lipid species that may impact macro-
phage polarization. To address this, select markers were
assessed in activated WT macrophages exposed to various
inhibitors. These included S-BEL, which inhibits iPLA2� to
limit hydrolysis of the sn-2 fatty acyl substituent and generation
of lysophospholipids, indomethacin, which inhibits COX, and
CDC, which is an inhibitor of 12-LO. These approaches
revealed that all three inhibitors decreased M1 markers Arg2
and iNOS, suggesting that COX- and 12-LO-derived lipids par-
ticipate in M1 polarization. Among the M1-related proteins
assessed, TNF� production from WT macrophages was also
inhibited by S-BEL, similar to our earlier findings in CD4�

T-cells (29), and indomethacin, but not CDC. Nitrite accumu-
lation, a reflection of iNOS-catalyzed generation of nitric oxide,
from activated WT macrophages was inhibited by both S-BEL
and indomethacin, but not CDC. Consistently, nitrite accumu-
lation from iPLA2��/� macrophages was significantly elevated
by the addition of PGE2, LPC, or LPA but not other lipids
including arachidonic acid. In support of a role for LPA in con-
tributing to the M1 phenotype are the findings of (a) decreased
LPA content in macrophages from iPLA2��/� mice in the pres-
ent study along with earlier demonstrations that (b) peritoneal
fluid content of LPA is markedly reduced in iPLA2�-null com-
pared with wild type mice (69), and (c) stimulus-induced for-
mation of LPA is greatly reduced in peritoneal macrophages
isolated from iPLA2��/� compared with WT mice (36). These
findings suggest that products of iPLA2� activity (lysophospho-
lipids) and arachidonic acid, which is metabolized to COX
products, contribute to M1 phenotype. In contrast, production
of M1-related IL-12 or IL-1 protein is not impacted by any of
the inhibitors, suggesting that not all M1-related factors are
susceptible to lipids arising from PLA2 activation or to lipid
signaling directly.

Similar analyses of M2 markers revealed a lack of effect of any
of the inhibitors on Arg1, whereas all three increased STAT6,
and only S-BEL increased CCL2. Furthermore, accumulation of
TGF� protein in the media of activated macrophages was
increased by S-BEL but not indomethacin or CDC. In contrast,
IL-10 production by macrophages was not affected by any of the
three inhibitors. These findings suggest that all M2 markers are
also not affected by iPLA2�. However, STAT6 appears to be
modulated by products of both COX- and 12-LO-catalyzed oxi-
dation of arachidonic acid derived through iPLA2� activation.
The findings that CCL2 mRNA and TGF� production are ele-
vated by S-BEL, but not by CDC or indomethacin, raises the
possibility that they are influenced by other eicosanoid-gener-
ating pathways, possibly involving 15- or 5-LO products. Unlike
the M1 markers, none of the M2 markers in macrophages from
iPLA2��/� mice were increased by the addition of any of the
lipids tested. It is tempting to speculate that iPLA2�-derived

lipids do not directly promote an M2 phenotype but rather shift
macrophage polarization toward an M1 phenotype. Con-
versely, in the absence or inhibition of iPLA2�, stimuli to pro-
mote a M1 phenotype are reduced, giving rise to a more per-
missive environment for other factors to engage and drive
macrophages toward an M2 phenotype.

Studies utilizing inhibitors and lipid supplementation high-
light the complexity of the contribution of eicosanoids to
immune responses (1, 46, 70). It is recognized that some of
these oxidized lipids can have inflammatory effects, whereas
others are anti-inflammatory. We find that the inducible
COX2, which is expressed under inflammatory conditions (71),
is up-regulated by classical activation in WT but not in
iPLA2��/� macrophages. In addition to PGE2, products of
COX2 include PGD2, PGF2�, prostacyclin, and thromboxane.
It might be speculated that modulation of these other products
is a factor in propagating an inflammatory response. Moreover
12-LO, which generates proinflammatory lipids (i.e. 12-S-hy-
droxyeicosatetraenoic acid) and is not detected in healthy islets
but is in both T1D and T2D islets (42), is induced to a much
higher level in WT macrophages than in iPLA2�-deficient
macrophages. The importance of 12-LO in promoting macro-
phage recruitment and activation and causing detrimental
effects on islet function and �-cell mass is supported by the
reports that deletion of 12-LO protects against T1D develop-
ment (44, 45). Our findings, therefore, suggest that iPLA2� acti-
vation, in addition to skewing macrophage polarization toward
M1, may also preserve functionality of downstream lipid-
metabolizing enzymes. The net effect may, therefore, rely on
preferential or selective generation of one lipid species over
another. This also identifies a limitation in the studies per-
formed with exposure of macrophages to individual lipids. It is
very likely that the net impact on macrophage polarization may
arise from combinations of different lipid species.

Equally important to consider are a separate class of lipids,
collectively designated “specialized pro-resolving mediators,”
that facilitate recovery and repair from inflammatory episodes
(72). Such lipids arise from oxidation of arachidonic acid by
15-LO or 5-LO (lipoxins), eicosapentaenoic acid (E series
resolvins), or docosahexaenoic acid (D series resolvins, protec-
tins, or marisins). In view of this, it is plausible to speculate that
the net impact of lipid signaling on macrophage polarization is
dependent on the pathway triggered and lipid species generated
under activating conditions.

Furthermore, the hydrolyzed sn-2 fatty acid may arise from
the actions of other PLA2s (with different substrate prefer-
ences), and this may be the cause for the greater changes we
observed in some marker abundances with indomethacin than
S-BEL. For instance, cPLA2, which has a preference for arachi-
donic acid-containing phospholipids is similarly induced in
WT and iPLA2��/� macrophages. cPLA2 co-localizes with
COX1 (73), which is constitutively expressed and manifests a
homeostatic protective role (71). Macrophages also express
membrane-associated iPLA2�, which manifest similar activity
as iPLA2� (74). However, its expression is not altered in the
iPLA2��/� macrophages nor is it induced under classical or
alternative activation in either WT or iPLA2��/� macro-
phages. In view of the observed predominance of M2 macro-
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phage phenotype associated with the iPLA2��/� genotype, we
propose that the predominant PLA2 with impact on macro-
phage polarization is iPLA2�.

We also recognize that the current study was performed in a
non-diseased model; nevertheless, as it was in the absence of
iPLA2� specifically, the findings reveal the potentially impor-
tant participation of iPLA2�-derived lipid signals in deciding
the fate of macrophage polarization. We previously demon-
strated that selective inhibition of iPLA2� in an autoimmune
model of spontaneous diabetes ameliorates T1D, in association
with reduced immune responses (29). The findings in the pres-
ent study, therefore, provide strong motivation to examine the
impact of selective inhibition of iPLA2� on polarization of
macrophages toward M2 phenotype in a model that is prone to
developing diabetes.

Cytokines induce NOX in a 12-LO product-dependent man-
ner to increase generation of ROS (75). Here we find that under
both naïve and classical activation conditions, NOX4 is
decreased in iPLA2��/� relative to WT macrophages. This is
consistent with a recent report demonstrating that NOX4
activity and subsequent macrophage chemotaxis were regu-
lated by iPLA2� activity (36). Intriguingly, evidences of iPLA2�
induction by ROS (76, 77) and iPLA2�-mediated ROS genera-
tion (36) suggest a feedback link between the two that could
lead to amplified inflammatory responses. Furthermore, ROS
induce the chemoattractant CCL2 (MCP-1) (36), and che-
motaxis in response to MCP-1 requires iPLA2� activation (26).
Consistent with a link between ROS and iPLA2� is our finding
that, relative to diabetes-resistant mouse strains, an increased
expression of iPLA2� mRNA is evident in islets from diabetes-
prone NOD female mice, an autoimmune model of T1D, but
not in islets from mice deficient in NOX-derived superoxide
(NOD.Ncf1m1J). These mice exhibit a marked delay in T1D
development (16).

In summary, we report for the first time an impact of iPLA2�
on macrophage polarization, where iPLA2� activation favors an
M1 proinflammatory macrophage phenotype, and decreased
activation favors an anti-inflammatory M2 phenotype. We
acknowledge that not all markers of M1 and M2 macrophages
were impacted by the absence of iPLA2�, and this may be
related to the stimuli used that are likely to differ from those
present under in vivo inflammatory conditions. Nevertheless,
the collection of marker changes observed in our study strongly
suggests that iPLA2� activation participates in macrophage
polarization away from the M2 phenotype. We further demon-
strate that iPLA2� activation can modulate expression of down-
stream enzymes that generate proinflammatory lipid and ROS
signals. As central regulators of diverse cellular functions, there
is growing interest in therapeutic targeting of PLA2s in the
management of multiple inflammation-associated disorders
(i.e. atherosclerosis, neurodegenerative, autoimmune, cancers)
(48, 49). In this context, mitigating iPLA2� expression/activity
may hold significant promise in countering the onset and/or
progression of inflammatory-based diseases.

Experimental Procedures

Animals—Breeders (C57BL/6 background) obtained from
Dr. John Turk (Washington University School of Medicine, St.

Louis, MO) were used to generate WT and iPLA2��/� mice at
the University of Alabama at Birmingham. The NOD mice were
all generated as described (16, 29). Before experimentation, the
mice were genotyped as described (30, 78). Animal experiments
were conducted according to approved Institution Animal Care
and Use Committee (IACUC) guidelines at the University of
Alabama at Birmingham.

Isolation and Culture of Peritoneal Macrophages—Mice
(6 –16 weeks of age) were sacrificed by CO2 inhalation and cer-
vical dislocation. Peritoneal macrophages were obtained by fill-
ing the peritoneal cavity with cold 5-ml PBS containing 2% FBS,
massaging gently, and withdrawing the cell-containing solu-
tion. Cells were pelleted at 300 	 g for 5 min and resuspended in
growth medium (Eagle’s minimum essential medium (Sigma,
M0894), 2.0 mg/ml sodium bicarbonate (Fisher, BP328-500], 2
mM L-glutamine (Life Technologies, 25030-081), 100 units/ml
penicillin-100 �g/ml streptomycin (Life Technologies, 15140-
122), and 10% heat-inactivated fetal bovine serum (Life Tech-
nologies, 16000044)) supplemented with 10% L929 cell-condi-
tioned medium (source of M-CSF). Macrophages from a single
collection were sufficient to seed six 60-mm non-treated cul-
ture dishes. Adherent macrophages appeared after 16 h of cul-
ture. All experiments were performed with expanded freshly
isolated peritoneal macrophages under classical and alternative
activation conditions as described below in the absence or pres-
ence of inhibitors of 12-LO, COX, or iPLA2�, 1 �M CDC
(ENZO Life Sciences, BML-EI211-0010), 50 �M 1-(4-chloro-
benzoyl)-5-methoxy-2-methyl-3-indoleacetic acid (indometh-
acin, Sigma, I7378), or 1 �M S-BEL (Cayman Chemical,
10006801), respectively, for 30 min. In certain experiments,
macrophage media was supplemented with individual lipid
species. These (from Cayman) included 1 �M 12(S)-hydroxylei-
cosatetraenoic acid (34570), 1 �M 5(S)- hydroxyleicosatetra-
enoic acid (34230), 1 �M 11,12-epoxyeicosatrienoic acid
(50511), 1 �M 14,15-epoxyeicosatrienoic acid (59651), 0.5 �M

arachidonic acid (9001886), 1 �M prostaglandin E2 (14010), 10
�M lysophosphatidylcholine (10172), or 1 �M lysophosphatidic
acid (857130).

Macrophage Activation—This was accomplished accord-
ing to previously published methods (70). For classical acti-
vation, macrophages were treated with 15 ng/ml recombi-
nant IFN�, R&D Systems, 485-MI-100) for 8 h in growth
medium followed by the addition of 10 ng/ml ultrapure LPS
(InvivoGen, tlrl-3pelps) and incubated for 16 h at 37 °C. For
alternative activation, macrophages were treated with 8
ng/ml recombinant IL-4 (R&D Systems, 404-ML-010) in
growth medium for 16 h. Naïve macrophages, which
received no activation stimuli, were maintained in growth
medium with no additional treatment.

Macrophage mRNA Target Analyses—Macrophages cul-
tured in 60-mm non-tissue culture-treated dishes were lysed in
1 ml of TRIzol (Life Technologies, 15596-026). Total RNA was
prepared and purified using RNeasy mini kits (Qiagen, 74104),
and 1 �g RNA was converted to cDNA using the Superscript III
first strand synthesis system (Life Technologies, 18080-051)
according to manufacturer’s instructions. The cDNA was
diluted 10-fold and used as a template in conventional or RT-
qPCR. cDNA transcripts were amplified with primers (Table 1),
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designed using NCBI Primer-BLAST (www.ncbi.nlm.nih.gov).
RT-qPCR was carried out using SYBR Select Mastermix (Life
Technologies, 4472908) according to the manufacturer’s
instructions. Relative gene expression levels were determined
using the 2�

Ct method.

ELISA and Nitrite Assays—After macrophage exposures to
the various treatments, media concentrations of M1- and
M2-related proteins were assessed by ELISA and of nitrite by
Griess assay, according to manufacturer’s instructions. ELISA
kits (R&D Systems) included those for ancillary ELISA reagent
(DY008), IL-12 (DY419), TNF� (DY410), IL-10 (DY417), TGF�
(DY1679), and IL-1� (DY401). Nitrite quantitation was per-
formed using a Griess reagent kit (ThermoFisher, G7921).

NOD Islet iPLA2� RT-qPCR Analyses—Islets were isolated
from female spontaneous diabetes-prone NOD, immune-defi-
cient and diabetes-resistant NOD.Rag, and NOX-derived
superoxide-deficient NOD (NOD.Ncf1m1j) mice, as described
(30). Total RNA was isolated and cDNA was prepared for
iPLA2� RT-qPCR analyses as described (29).

Mass Spectrometric Determination of LPA Molecular
Species—Isolated mouse peritoneal macrophages were homog-
enized in a mixture of CHCl3 (1 ml), 17:0 LPA (internal stan-
dard, 200 ng, Avanti, 857127), and 0.1 M HCl (0.5 ml). The
homogenate was sonicated on ice (20% power, 5-s bursts for
60 s; Vibra Cell probe sonicator; Sonics and Materials, Danbury,
CT). CHCl3 (1 ml) and 0.1 M HCl were then added, and vortex-
mixing and centrifugation (2800 	 g, 5 min) were performed.
The organic phase was removed, concentrated to dryness
under N2, and reconstituted in 80% CH3OH (100 �l). An ali-
quot (10 �l) was analyzed by liquid chromatography-tandem
tandem mass spectrometry (LC-MS/MS) on a Surveyor HPLC
(ThermoElectron) using a modified gradient (79) on a C8 col-
umn (15 cm 	 2.1 mm; Sigma) interfaced with the ion source of
a ThermoElectron Vantage triple quadruple mass spectrome-
ter with extended mass range operated in negative ion mode as
described (80). Multiple reaction monitoring transitions were
monitored for [M-H]� ions of the most abundant LPA species
in mouse macrophage lipid extracts: 409.0/153.0 (16:0-LPA),

TABLE 1
Primers listing for targets analyzed by RT-qPCR
F, forward; R, reverse.

Name Sequence (5� to 3�)
Tm

(salt) Target
Product

size

bp
msRETNLA_qRT.F CAGCTGATGGTCCCAGTGAAT 60 Resistin-like� (Fizz1) 212
msRETNLA_qRT.R TCCCAAGATCCACAGGCAAA 59
msARG1_qRT.F AGCACTGAGGAAAGCTGGTC 60 Arginase, liver (Arg1) 131
msARG1_qRT.R CAGACCGTGGGTTCTTCACA 60
msCHIL3_qRT.F AAGCTCTCCAGAAGCAATCCT 59 Chitinase-like3 (YM1) 187
msCHIL3_qRT.R GAGTACACAGGCAGGGGTCA 61
msSTAT6_qRT.F AGTTTTTAGGGCCAGCCCAG 60 Signal transducer and activator of transcription6 (STAT6) 265
msSTAT6_qRT.R AAGCATCTGAACCGACCAGG 60
msMRC1_qRT.F GTCAGAACAGACTGCGTGGA 60 Macrophage mannose receptor 1 C-type precursor (Mrc1) 281
msMRC1_qRT.R AGGGATCGCCTGTTTTCCAG 60
msCCL5_qRT.F GTGCCCACGTCAAGGAGTAT 60 C-C motif chemokine 5 precursor (CCL5) 103
msCCL5_qRT.R TTCTCTGGGTTGGCACACAC 60
msTNF_qRT.F GGTGCCTATGTCTCAGCCTC 60 Tumor necrosis factor (TNF) 177
msTNF_qRT.R GCTCCTCCACTTGGTGGTTT 60
msSTAT1_qRT.F CCTGCGTGCAGTGATCGTTT 62 Signal transducer and activator of transcription1 (STAT1) 285
msSTAT1_qRT.R TGGGCCAGGTACTGTCTGAT 60
msPtgs2_qRT.F3 TGAGTGGGGTGATGAGCAAC 60 Cyclooxygenase 2 178
msPtgs2_qRT.R3 TTCAGAGGCAATGCGGTTCT 60
msNfkb1_qRT.F GGTCACCCATGGCACCATAA 60 NF-�B p105 (p50 precursor) 231
msNfkb1_qRT.R AGCTGCAGAGCCTTCTCAAG 60
msRela_qRT.F GAACCTGGGGATCCAGTGTG 60 NF-�B p65 266
msRela_qRT.R AGTTCCGGTTTACTCGGCAG 60
CCL2_qRT.F CTGGAGCATCCACGTGTTGG 61 MCP-1 198
CCL2_qRT.R CATTCCTTCTTGGGGTCAGC 59
ALOX12_qRT.F GGCTATCCAGATTCAGCCCC 60 12-Lipoxygenase 271
ALOX12_qRT.R CCGGCTTCGCGTGTTAATTT 60
CYBB_qRT.F TTCTTCATCGGCCTTGCCAT 60 NADPH oxidase2 (NOX2) 226
CYBB_qRT.R GCCAAAACCGAACCAACCTC 60
NOX4_qRT.F CATTCACCAAATGTTGGGCCT 60 NADPH oxidase4 (NOX4) 229
NOX4_qRT.R GGCTACATGCACACCTGAGA 60
CD68_qRT.F GGGGCTCTTGGGAACTACAC 60 CD68 167
CD68_qRT.R GTACCGTCACAACCTCCCTG 60
msINOS_qRT.F CAGGTCTTTGACGCTCGGAA 60 iNOS 167
msINOS_qRT.R GCCTGAAGTCATGTTTGCCG 60
msARG2_qRT.F GCAAATTCCTTGCGTCCTGA 60 Arginase2 (Arg2) 254
msARG2_qRT.R AGGCCCACTGAACGAGGATA 60
msCXCL10_qRT.F2 ATGACGGGCCAGTGAGAATG 60 Chemokine (C-X-C motif) ligand 10 (Cxcl10) 249
msCXCL10_qRT.R2 GAGGCTCTCTGCTGTCCATC 60
EMR1_qRT.F2 CTCTTCTGGGGCTTCAGTGG 60 F4/80 273
EMR1_qRT.R2 GCAGACTGAGTTAGGACCACA 60
PLA2G4A_qRT.F ACGTGCCACCAAAGTAACCA 60 cPLA2� 97
PLA2G4A_qRT.R CCTGCTGTCAGGGGTTGTAG 60
PLA2G6_qRT.F GGCAGAAGTGGACACCCCAA 60 iPLA2� 130
PLA2G6_qRT.R CATGGAGCTCAGGATGAACGC 60
PNPLA8_qRT.F AATGAGTTGGAGCCATGCGT 60 iPLA2� 115
PNPLA8_qRT.R TACCTTAGGACATGCGGGGT 60
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423.0/153.0 (17:0-LPA internal standard), 433.0/153.0 (18:2-
LPA), 435.0/153.0 (18:1-LPA), 437.0/153.0 (18:0-LPA), 457.0/
153.0 (20:4 LPA), and 481.1/153.0 (22:6 LPA).

Statistical Analysis—Data are presented as the means � S.E.
Statistical significances between groups were determined using
Student’s t test. Values for p � 0.05 for RT-qPCR (2-tailed) and
ELISA/Griess (1-tailed) were considered significant.
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