13 research outputs found

    Ternary Transition Metal Complexes with an Azo-Imine Ligand and 2,2’-Bipyridine: Characterization, Computational Calculations, and Acetylcholinesterase Inhibition Activities

    Get PDF
    New mononuclear ternary transition metal complexes: [M(HL)(bipy)2]ClO4, (M: Mn(II) for 1, Ni(II) for 2), [M(HL)(bipy) (ClO4)], (M: Ni(II) for 3, Cu(II) for 4, Zn(II) for 5) with M(II), 2-[(E)-(hydroxyimino)methyl]-4-[(E)-phenyldiazenyl]phenol, H2L, and 2,2ˈ-bipyridine were synthesized. The structures of the complexes were investigated by using various analytical, spectroscopic techniques such as elemental analysis, FTIR, UV-Vis, NMR, MALDI-TOF mass spectrometry, thermal analysis, and computational studies containing geometric optimizations and theoretical calculations of vibrations and electronic transitions. IR and thermal analysis data verifies the proposed structure of the complexes. The inhibition activities of the complexes against acetylcholinesterase (AChE) extracted from Ricania simulans adults and nymphs were examined and all the complexes were found to be active. Among the complexes studied, the most inhibition activity was exhibited by complex 5 with the lowest IC50 value (3.2±0.8) for AChE of adults, complex 3 with the lowest IC50 value (4.6±0.8) for AChE of nymphs

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Levels of Heavy Metals in Some Commercial Fish Species Captured from the Black Sea and Mediterranean Coast of Turkey

    No full text
    The distribution of some heavy metals in the muscle tissue of Merlangius merlangus (whiting), Mullus barbatus (red mullet), Engraulis encrasicholus (anchovy) from Black and Mediterranean Seas were studied. The highest Al (95.313 mu g/g dw), Mn (1.390 mu g/g dw), Zn (25.416 mu g/g dw) concentration was detected in E. encrasicholus from Black Sea; the highest Li (3.200 mu g/g dw) concentration was detected in E. encrasicholus from Mediterranean Sea; the highest Cd (1.685 mu g/g dw) concentration was detected in M. merlangus from Mediterranean Sea; the highest Ni (1.363 mu g/g dw) concentration was detected in M. merlangus from Black Sea; the highest Pb (0.727 mu g/g dw) concentration was detected in M. barbatus from Black Sea and the highest Cr (1.893 mu g/g dw), Fe (21.901 mu g/g dw) concentration was detected in M. barbatus from Mediterranean Sea

    Synthesis, in vitro DNA interactions, cytotoxicities, antioxidative activities, and topoisomerase inhibition potentials of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes with azo-oxime ligands

    No full text
    Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) transition metal complexes of 2-hydroxy-5-[(E)-(4-phenyl) diazenyl] benzaldehyde oxime and 2-hydroxy-5-[(E)-(4-nitrophenyl) diazenyl] benzaldehyde oxime ligands were synthesized and characterized through NMR, IR, ESI mass, and UV analysis. DNA binding abilities of the complexes were revealed using a UV-Vis spectrophotometer with the absorption titration and competitive binding techniques. Hydrolytic and oxidative DNA cleavage activities under different conditions were also proved. Topoisomerase I inhibition efficiencies and in vitro free radical scavenging activities of all complexes were examined. Finally, the selective cytotoxic potentials of all complexes were evaluated in human colon cancer, normal colon, and fibroblast cell lines using the water-soluble tetrazolium salt (WST-1) assay. The complexes had the ability to intercalate into stacked base pairs of DNA and topoisomerase I activity was reasonably inhibited in their presence in 0.4 mM concentrations. The abilities for scavenging of DPPH and hydroxyl radicals were found to be higher than those of known standard antioxidants (ascorbic acid, butylated hydroxyanisole, and mannitol). The results obtained from the cytotoxicity experiments are especially promising for further research, which must be carried out for the evaluation of the studied complexes as anticancer drugs
    corecore