303 research outputs found

    SteinerNet: a web server for integrating ‘omic’ data to discover hidden components of response pathways

    Get PDF
    High-throughput technologies including transcriptional profiling, proteomics and reverse genetics screens provide detailed molecular descriptions of cellular responses to perturbations. However, it is difficult to integrate these diverse data to reconstruct biologically meaningful signaling networks. Previously, we have established a framework for integrating transcriptional, proteomic and interactome data by searching for the solution to the prize-collecting Steiner tree problem. Here, we present a web server, SteinerNet, to make this method available in a user-friendly format for a broad range of users with data from any species. At a minimum, a user only needs to provide a set of experimentally detected proteins and/or genes and the server will search for connections among these data from the provided interactomes for yeast, human, mouse, Drosophila melanogaster and Caenorhabditis elegans. More advanced users can upload their own interactome data as well. The server provides interactive visualization of the resulting optimal network and downloadable files detailing the analysis and results. We believe that SteinerNet will be useful for researchers who would like to integrate their high-throughput data for a specific condition or cellular response and to find biologically meaningful pathways. SteinerNet is accessible at http://fraenkel.mit.edu/steinernet.National Institutes of Health (U.S.) (U54-CA112967)National Institutes of Health (U.S.) (R01-GM089903)National Science Foundation (Award Number DB1-0821391)National Institutes of Health (U.S.) (U54-CA112967

    Reconstruction of the temporal signaling network in Salmonella-infected human cells

    Get PDF
    Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Using high-throughput ‘omic’ technologies, changes in the signaling components can be quantified at different levels; however, experimental hits are usually incomplete to represent the whole signaling system as some driver proteins stay hidden within the experimental data. Given that the bacterial infection modifies the response network of the host, more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles in which a confident region from the protein interactome is found by inferring hits from the omic experiments. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic datasets. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections

    Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package

    Get PDF
    High-throughput, ‘omic’ methods provide sensitive measures of biological responses to perturbations. However, inherent biases in high-throughput assays make it difficult to interpret experiments in which more than one type of data is collected. In this work, we introduce Omics Integrator, a software package that takes a variety of ‘omic’ data as input and identifies putative underlying molecular pathways. The approach applies advanced network optimization algorithms to a network of thousands of molecular interactions to find high-confidence, interpretable subnetworks that best explain the data. These subnetworks connect changes observed in gene expression, protein abundance or other global assays to proteins that may not have been measured in the screens due to inherent bias or noise in measurement. This approach reveals unannotated molecular pathways that would not be detectable by searching pathway databases. Omics Integrator also provides an elegant framework to incorporate not only positive data, but also negative evidence. Incorporating negative evidence allows Omics Integrator to avoid unexpressed genes and avoid being biased toward highly-studied hub proteins, except when they are strongly implicated by the data. The software is comprised of two individual tools, Garnet and Forest, that can be run together or independently to allow a user to perform advanced integration of multiple types of high-throughput data as well as create condition-specific subnetworks of protein interactions that best connect the observed changes in various datasets. It is available at http://fraenkel.mit.edu/omicsintegrator and on GitHub at https://github.com/fraenkel-lab/OmicsIntegrator.National Institutes of Health (U.S.) (grant U54CA112967)National Institutes of Health (U.S.) (grant U01CA184898)National Institutes of Health (U.S.) (grant U54NS091046)National Institutes of Health (U.S.) (grant R01GM089903

    Quantifying the geographical distribution effect on decreasing aggregated nitrogen oxides intensity in the Chinese electrical generation system

    Get PDF
    Over the past 20 years, the spatial distribution of electrical generation and its relationship to cross-regional power transmission has impacted China's power generation system and significantly affected the total amount of NO x and the aggregated nitrogen oxides intensity (ANI) of the system. An investigation of the driving mechanisms of ANI that considers the unevenness of regional electricity generation will be crucial to future improvements in the NO x efficiency of the electrical generation system in China. In this study, we built a decomposition model for ANI by incorporating the spatial distribution of electrical generation and found that the spatial distribution of electricity generation together with energy-related factors gradually caused decreases in ANI. The efficiency of electricity generation presented the dominant inhibitory effect on ANI, but its effect size has weakened since 2010. In contrast, the fossil fuel structure of thermal power shows an increasingly positive effect on changes in ANI. The primary energy composition only slightly affected changes in ANI. Moreover, the changed geographical distribution of electricity generation is non-negligible and has a positive effect on reduction of the ANI of the Chinese electrical generation system. The transferred amount of local NO x emissions by cross-provincial electricity transmission, however, could cause lead to additional environmental costs for generators. This issue should receive more attention in the future

    HotPoint: hot spot prediction server for protein interfaces

    Get PDF
    The energy distribution along the protein–protein interface is not homogenous; certain residues contribute more to the binding free energy, called ‘hot spots’. Here, we present a web server, HotPoint, which predicts hot spots in protein interfaces using an empirical model. The empirical model incorporates a few simple rules consisting of occlusion from solvent and total knowledge-based pair potentials of residues. The prediction model is computationally efficient and achieves high accuracy of 70%. The input to the HotPoint server is a protein complex and two chain identifiers that form an interface. The server provides the hot spot prediction results, a table of residue properties and an interactive 3D visualization of the complex with hot spots highlighted. Results are also downloadable as text files. This web server can be used for analysis of any protein–protein interface which can be utilized by researchers working on binding sites characterization and rational design of small molecules for protein interactions. HotPoint is accessible at http://prism.ccbb.ku.edu.tr/hotpoint

    CCRXP: exploring clusters of conserved residues in protein structures

    Get PDF
    Conserved residues forming tightly packed clusters have been shown to be energy hot spots in both protein–protein and protein–DNA complexes. A number of analyses on these clusters of conserved residues (CCRs) have been reported, all pointing to a crucial role that these clusters play in protein function, especially protein–protein and protein–DNA interactions. However, currently there is no publicly available tool to automatically detect such clusters. Here, we present a web server that takes a coordinate file in PDB format as input and automatically executes all the steps to identify CCRs in protein structures. In addition, it calculates the structural properties of each residue and of the CCRs. We also present statistics to show that CCRs, determined by these procedures, are significantly enriched in ‘hot spots’ in protein–protein and protein–RNA complexes, which supplements our more detailed similar results on protein–DNA complexes. We expect that CCRXP web server will be useful in studies of protein structures and their interactions and selecting mutagenesis targets. The web server can be accessed at http://ccrxp.netasa.org

    The protein common interface database (ProtCID)—a comprehensive database of interactions of homologous proteins in multiple crystal forms

    Get PDF
    The protein common interface database (ProtCID) is a database that contains clusters of similar homodimeric and heterodimeric interfaces observed in multiple crystal forms (CFs). Such interfaces, especially of homologous but non-identical proteins, have been associated with biologically relevant interactions. In ProtCID, protein chains in the protein data bank (PDB) are grouped based on their PFAM domain architectures. For a single PFAM architecture, all the dimers present in each CF are constructed and compared with those in other CFs that contain the same domain architecture. Interfaces occurring in two or more CFs comprise an interface cluster in the database. The same process is used to compare heterodimers of chains with different domain architectures. By examining interfaces that are shared by many homologous proteins in different CFs, we find that the PDB and the Protein Interfaces, Surfaces, and Assemblies (PISA) are not always consistent in their annotations of biological assemblies in a homologous family. Our data therefore provide an independent check on publicly available annotations of the structures of biological interactions for PDB entries. Common interfaces may also be useful in studies of protein evolution. Coordinates for all interfaces in a cluster are downloadable for further analysis. ProtCiD is available at http://dunbrack2.fccc.edu/protcid

    Ischemic Heart Disease Selectively Modifies the Right Atrial Appendage Transcriptome

    Get PDF
    Background: Although many pathological changes have been associated with ischemic heart disease (IHD), molecular-level alterations specific to the ischemic myocardium and their potential to reflect disease severity or therapeutic outcome remain unclear. Currently, diagnosis occurs relatively late and evaluating disease severity is largely based on clinical symptoms, various imaging modalities, or the determination of risk factors. This study aims to identify IHD-associated signature RNAs from the atrial myocardium and evaluate their ability to reflect disease severity or cardiac surgery outcomes.Methods and Results: We collected right atrial appendage (RAA) biopsies from 40 patients with invasive coronary angiography (ICA)-positive IHD undergoing coronary artery bypass surgery and from 8 patients ICA-negative for IHD (non-IHD) undergoing valvular surgery. Following RNA sequencing, RAA transcriptomes were analyzed against 429 donors from the GTEx project without cardiac disease. The IHD transcriptome was characterized by repressed RNA expression in pathways for cell-cell contacts and mitochondrial dysfunction. Increased expressions of the CSRNP3, FUT10, SHD, NAV2-AS4, and hsa-mir-181 genes resulted in significance with the complexity of coronary artery obstructions or correlated with a functional cardiac benefit from bypass surgery.Conclusions: Our results provide an atrial myocardium-focused insight into IHD signature RNAs. The specific gene expression changes characterized here, pave the way for future disease mechanism-based identification of biomarkers for early detection and treatment of IHD.Peer reviewe

    Composite structural motifs of binding sites for delineating biological functions of proteins

    Get PDF
    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs which represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.Comment: 34 pages, 7 figure

    HotSprint: database of computational hot spots in protein interfaces

    Get PDF
    We present a new database of computational hot spots in protein interfaces: HotSprint. Hot spots are residues comprising only a small fraction of interfaces yet accounting for the majority of the binding energy. HotSprint contains data for 35 776 protein interfaces among 49 512 protein interfaces extracted from the multi-chain structures in Protein Data Bank (PDB) as of February 2006. The conserved residues in interfaces with certain buried accessible solvent area (ASA) and complex ASA thresholds are flagged as computational hot spots. The predicted hot spots are observed to correlate with the experimental hot spots with an accuracy of 76%. Several machine-learning methods (SVM, Decision Trees and Decision Lists) are also applied to predict hot spots, results reveal that our empirical approach performs better than the others. A web interface for the HotSprint database allows users to browse and query the hot spots in protein interfaces. HotSprint is available at http://prism.ccbb.ku.edu.tr/hotsprint; and it provides information for interface residues that are functionally and structurally important as well as the evolutionary history and solvent accessibility of residues in interfaces
    corecore