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incorporating the spatial distribution of electrical generation and found 

that the spatial distribution of electricity generation together with 

energy-related factors gradually caused decreases in ANI. The efficiency 
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ANI, but its effect size has weakened since 2010. In contrast, the fossil 

fuel structure of thermal power shows an increasingly positive effect on 

changes in ANI. The primary energy composition only slightly affected 

changes in ANI. Moreover, the changed geographical distribution of 

electricity generation is non-negligible and has a positive effect on 

reduction of the ANI of the Chinese electrical generation system. The 

transferred amount of local NOx emissions by cross-provincial electricity 

transmission, however, could cause lead to additional environmental costs 

for generators. This issue should receive more attention in the future. 
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2 

 Electrical generation efficiency inhibited ANI strongly but gradually 1 

weakened over time. 2 

 The geographical distribution effect reduced the ANI but transferred 3 

environmental costs.  4 

 The electrical generation structure will hopefully affect ANI reduction in 5 

future. 6 

 7 

Abstract 8 

Over the past 20 years, the spatial distribution of electrical generation and its 9 

relationship to cross-regional power transmission has impacted China’s power 10 

generation system and significantly affected the total amount of NOx and the 11 

aggregated nitrogen intensity (ANI) of the system. An investigation of the driving 12 

mechanisms of ANI that considers the unevenness of regional electricity generation 13 

will be crucial to future improvements in the NOx efficiency of the electrical 14 

generation system in China. In this study, we built a decomposition model for ANI by 15 

incorporating the spatial distribution of electrical generation and found that the spatial 16 

distribution of electricity generation together with energy-related factors gradually 17 

caused decreases in ANI. The efficiency of electricity generation presented the 18 

dominant inhibitory effect on ANI, but its effect size has weakened since 2010. In 19 

contrast, the fossil fuel structure of thermal power shows an increasingly positive 20 

effect on changes in ANI. The primary energy composition only slightly affected 21 

changes in ANI. Moreover, the changed geographical distribution of electricity 22 
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generation is non-negligible and has a positive effect on reduction of the ANI of the 1 

Chinese electrical generation system. The transferred amount of local NOx emissions 2 

by cross-provincial electricity transmission, however, could cause lead to additional 3 

environmental costs for generators. This issue should receive more attention in the 4 

future.  5 

Keywords: aggregated NOx generation intensity, electricity generation, LMDI, 6 

geographical distribution effect, China 7 

1. Introduction 8 

Urbanization and economic growth in China has resulted in a sharp increase in 9 

electrical generation and consumption (Pu et al., 2018), leading to increasing pressure 10 

to manage atmospheric pollutants, such as nitrogen oxides (NOx). The NOx generated 11 

by the Chinese electrical generation system are important pollutants related to 12 

urbanization and industrialization (Wang et al., 2018b) and have an influential effect 13 

on urban air quality challenges (He et al., 2014). In China, the total amount of NOx 14 

emissions from the Chinese electrical generation system has been increasing yearly 15 

and accounted for approximately 33% of total NOx generation in 2012 (Huang et al., 16 

2016); however, the aggregated nitrogen intensity (ANI) of the system, an important 17 

indicator of NOx emissions efficiency in power generation, has been decreasing over 18 

the past 20 years. Investigation of the drivers of ANI reduction is crucial for 19 

policymakers in order to maintain the ongoing trend and further reduce NOx 20 

emissions from electrical generation in China.  21 

Previous studies have explored NOx emissions from electricity generation using 22 
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the three following approaches. The first approach calculated and measured NOx 1 

emissions from electricity generation. Huang et al. (2016) accounted for NOx 2 

emissions of China’s power plants from 2004 to 2010. Tian et al. (2013) established a 3 

NOx emissions inventory for Chinese electricity plants in 2010. Zhao et al. (2008) 4 

estimated NOx emissions for coal-fired electricity generation in China between 2000 5 

and 2005. All of these findings indicated a notable change in the spatial distribution of 6 

NOx emissions related to electricity generation. 7 

A second approach explored the impact factors and mechanisms of NOx 8 

emissions. Some of these studies considered the impacts of technological solutions for 9 

NOx reduction in electrical generation, such as Selective Catalytic Reduction (Ma et 10 

al., 2016), hydrogen enrichment (Kornbluth et al., 2012), the optimal overfire air ratio 11 

(Ti et al., 2014), or steam-treated pellets (McKechnie et al., 2016). Other studies 12 

explored the impact of factors related to energy utilization on NOx emissions, 13 

including biomass power generation (Monroy et al., 2018), biogas with a 14 

stoichiometric air-fuel ratio (Kim et al., 2016), or natural gas power generation (Gür, 15 

T. M., 2016). Other studies considered the impacts of energy policy on NOx emissions. 16 

Asane-Otoo (2016) showed that regulations, such as privatization and unbundling 17 

vertically integrated activities in the electricity market, decrease sectoral NOx 18 

emission intensity in OECD countries, and Huang et al. (2017) simulated the impacts 19 

of different environmental regulations on NOx emissions across eastern China (Anhui, 20 

Fujian, Shanghai, and Zhejiang). 21 

There is increasing concern about the effects of geographical distribution and 22 
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regional differences in electrical generation on GHG emissions. Chen et al. (2018a) 1 

studied driving factors of electrical carbon productivity (ECP) changes in China from 2 

a regional and departmental perspective (including the power industry). Chen et al. 3 

(2018b) analyzed the driving factors of electrical carbon productivity (ECP) changes 4 

in China’s power industry from a regional perspective, where the influence of power 5 

transfers among provinces, imports and exports, and transmission losses are 6 

considered. Liu et al. (2017) explored the driving force of the aggregate carbon 7 

intensity (ACI) of electrical generation in China in 30 provinces. These studies only 8 

compared provincial differences, and there has been a lack of quantification of the 9 

contribution of geographical distribution. Contextually, some studies have attempted 10 

to introduce geographical distribution as a substantial effect on the model to explore 11 

emissions from the power industry. Ang and Su (2016) explained the impact of the 12 

global geographic transformation on aggregated CO2 intensity generated by electricity 13 

generation. Zhou et al. (2014) explored the drivers of regional CO2 emissions from 14 

thermal power generation activities, considering changes in the spatial distribution of 15 

electricity generation.  16 

A third approach predicted and explored future trends of NOx emissions from 17 

electrical generation. Wang et al. (2018c) predicted future air pollution (including 18 

NO2) in Beijing based on a series of thermal power emission control policies for the 19 

Beijing-Tianjin-Hebei region. Hu et al. (2016) assumed different scenarios for future 20 

power development and simulated their effects on China’s air quality (including NOx) 21 

in 2030. Wang et al. (2015) used the Canadian Applied Mathematics Quarterly model 22 
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to simulate and evaluate the environmental impact of NO2 from Emission Standards 1 

for Air Pollutants from Thermal Power Plants. Shim and Hong (2016) predicted NOx 2 

emissions in 2027 based on the changes in South Korean power plants. Cofala et al. 3 

(2007) developed two scenarios to estimate future anthropogenic emissions of the air 4 

pollution precursors (including NOx) using a global version of the Regional Air 5 

Pollution Information and Simulation (RAINS). 6 

Existing studies reveal a two-fold research gap to fill: on one hand, when 7 

comparing the increasing amount of electrical generation and its NOx emissions, it is 8 

important to find the drivers that affect ANI change and improve the NOx efficiency 9 

of the Chinese electrical generation system. On the other hand, the decomposition 10 

method in previous studies was largely a comparison among different regions instead 11 

of quantifying the effect of geographical distribution into the decomposition model 12 

and should be improved. 13 

In this study, we proposed three main advances to bridge the knowledge gap in 14 

previous studies. First, we estimated ANI and displayed the temporal change and 15 

spatial distribution of the NOx emissions efficiency of the Chinese electrical 16 

generation system over the past 20 years in China. Second, we explored how 17 

energy-related drivers, including electricity generation structure, the efficiency of 18 

electrical generation, and primary energy composition affected the deceasing ANI of 19 

the Chinese electrical generation system. Third, we elaborated in detail how 20 

geographical electricity distribution affected decreasing ANI by incorporating the 21 

geographical distribution of electrical generation into the decomposition model.  22 
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The following sections are organized as follows: Section 2 describes the method 1 

of accounting for NOx generation, the LMDI model, and data acquisition. Section 3 2 

describes the traits of electricity generation, electricity consumption, and ANI. Section 3 

4 illustrates the results of the LMDI model. Section 5 presents the study’s conclusions 4 

and provides suggestions.  5 

2. Method and data 6 

2.1 Estimation of NOx generation from electrical generation 7 

In this study, the total amount of NOx generation from the Chinese electrical 8 

generation system in China was estimated by the bottom-up approach, which is 9 

suitable for large-scale data accounting. 10 

                                            (1) 11 

where E(t) is the amount of NOx generation from electricity generation at year t; 12 

j and i are respectively the mean province and fuel type; EF is the NOx generation 13 

factor, which means the quality (kg) of NOx generated by the combustion of 1 ton of a 14 

particular energy source; Q characterizes the quality of fuel consumption.  15 

In this paper, ANI is used to characterize the level of NOx generation in China’s 16 

electrical generation. The specific formula was as follows: 17 

  
 

 
                                   (2) 18 

where V means the ANI and G denotes the gross electrical generation. 19 

2.2 Decomposition method 20 

Generally, NOx produced by electrical generation is influenced by electrical 21 
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generation technology and by the energy composition, energy efficiency and the 1 

provincial distribution of electrical generation (Shrestha et al., 1998; Huang et al., 2 

2017). Based on the LMDI model created by Ang (2001, 2005), we decomposed the 3 

changes in ANI into the following factors:  4 

  
 

 
  

  

 
 
  

  
 
  

  
 
    

  
 
    

    
                              (3) 5 

where   ,   , and    represent electricity generation, thermal power generation, 6 

and fossil fuel consumption in j province.     and     respectively mean the 7 

consumed fossil fuel and NOx generation connected with electrical generation from 8 

using fossil fuel i in province j. 9 

This study assumed the following: the geographical distribution effect is 10 

reflected by    
  

 
, the electrical generation in province j as a percentage of the 11 

domestic total electricity generation. The electrical generation structure effect is 12 

represented by    
  

  
, which is the ratio of thermal power generation to national 13 

electrical generation. The electrical generation efficiency effect is expressed by 14 

   
  

  
, which shows the ratio of energy input and electrical generation. The primary 15 

energy composition effect is characterized by     
   

  
, which expresses the 16 

proportion of various types of fossil fuel in thermal power generation.     
   

   
 is the 17 

NOx emissions factor for certain fuels, which are known constants. 18 

Based on the LMDI model, Eq. (4) can be used to account for changes in ANI 19 

between year t and 0. In addition, Eq. (5)–(11) can be applied to each effect. 20 

                                 (4) 21 

          
     

      
  
 

  
                         (5) 22 
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9 
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                             (10) 5 

       
   

       
,                              (11) 6 

Usually, the consumption of a specific fossil fuel will have a positive or zero 7 

value, which would cause decomposition failure; therefore, the method introduced by 8 

Ang and Liu (2001) was used in order to deal with zero-values. 9 

2.3 Data  10 

 This study estimated the NOx generation from electrical generation in 29 11 

provinces of China, which is a prerequisite for estimating the ANI of electrical 12 

generation. Some provinces, including Ningxia, Xizang, Hong Kong, Taiwan, and 13 

Macau are not studied due to data deficiencies. 14 

Fuel types considered in this study were coal, diesel oil, coke, gasoline, fuel oil, 15 

crude oil, coke oven gas, kerosene, natural gas, liquefied petroleum gas, other gas, 16 

and refinery gas. The factors of NOx generation for each fuel were obtained from Kato 17 

and Akimoto (1992) and Hao et al. (2002), which are widely accepted in China (Tian 18 

et al., 2001; Gao et al., 2006; Lang et al., 2008; Jiang et al., 2016). Standard coal 19 

coefficients for every kind of fuel were derived from the China Energy Statistical 20 

Yearbook (CESY). This study estimated the provincial and national consumption of 21 

every type of fuel by using the energy balance sheet in the CESY from 1994 to 2016. 22 
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10 

This paper divides 20 years into four phases: 1995-2000 (Stage 1), 2000-2005 1 

(Stage 2), 2005-2010 (Stage 3), and 2010-2015 (Stage 4). Every stage matches the 2 

starting and ending times of “The Five-Year Plan” in China, which fully reflects 3 

China's economic development, social changes, and energy consumption. 4 

3. Overview of China’s electrical generation and ANI  5 

3.1 Characteristics of China’s electrical generation and demand 6 

 7 

Figure 1. Electrical generation and consumption in China from 1995 to 2015  8 

As shown in Figure 1, China’s electrical generation and consumption have 9 

rapidly grown from 991.86 to 5728.58 TWh and from 936.69 to 5429.68 TWh, 10 

respectively. Electrical consumption showed a higher rate of increase than electrical 11 

generation. The average annual rates of electrical generation changed synchronously 12 

with consumption during each of the four stages. Both electrical generation and 13 

consumption showed the fastest growth in stage 2, which might be related to the many 14 

investments into the economy during that stage. The spatial distribution of electrical 15 

generation did not match that of electrical consumption, a characteristic feature of the 16 

electrical generation system of China (Wang et al., 2018a). This did not simply 17 
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11 

change the provincial distribution of NOx emissions from electrical generation, but 1 

might consequently affect the national ANI. 2 

 3 

3.2 Characteristics of NOx generation from electrical generation in China 4 

  5 

 6 

Figure 2. Changes in ANI and the total amount of NOx generation in China 7 

In Figure 2 we observe that NOx emissions from the Chinese electrical 8 

generation system played an important role in the total amount of NOx generation 9 

related to energy consumption, which made 39.33, 40.10, 41.43, 39.93, and 41.77% 10 

contributions during each of the five-year periods, respectively. The total amount of 11 

NOx generation from electrical generation grew rapidly from 4.6 million tons to 16.9 12 

million tons from 1995 to 2015, representing an increase of 280.04%. The average 13 

growth rate in NOx generation during the four stages were 17.58, 98.19, 44.54, and 14 

12.84%, respectively, and the maximum rate occurred in the second stage. Although 15 

the total amount of NOx generation related to energy consumption increased, we 16 
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found that ANI showed a downward trend from 1995 to 2015 with a decline rate of 1 

33.18%. The annual rates of ANI were -2.82, 1.79, -2.98, and -4.04% per stage, 2 

respectively.  3 

We found that NOx emissions from electrical generation showed spatial 4 

heterogeneity in China (Figure 3 and 4). The hot spots (high ANI accumulation areas) 5 

were mainly concentrated in the north of China. The cold spots (low ANI 6 

accumulation areas) were mainly concentrated in the south of China, which included 7 

Chongqing, Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hainan, Hubei, Hunan, 8 

Qinghai, Sichuan, Yunnan, and Zhejiang. Hot spots with higher electrical generation 9 

and ANI included Hebei, Henan, Inner Mongolia, Jiangsu, Liaoning, Shandong, and 10 

Shanxi. In contrast, Beijing, Chongqing, Gansu, Guangxi, Hainan, and Qinghai were 11 

cold spots with lower electricity generation and ANI. Heilongjiang, Jilin, Jiangxi, and 12 

Xinjiang had high ANI but produced less electricity, while Guangdong and Sichuan 13 

had low ANI but produced more electricity.  14 

Considering that the spatial distribution of China’s electricity generation has 15 

undergone significant changes over the past 20 years, we explored how the spatial 16 

distribution of provincial electrical generation has influenced decreasing ANI and 17 

whether this interaction is beneficial for the reduction of NOx generation from 18 

electricity generation. The following sections introduce a decomposition model that 19 

considers the spatial distribution of electrical generation to quantify the driving forces 20 

affecting the ANI of the Chinese electrical generation system.21 
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 2 

Figure 3. NOx generation by electrical generation in China from 1995 to 2015 3 

 4 

Figure 4. Geographical shift of aggregated nitrogen intensity (ANI) in China from 1995 to 2015 5 
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4. Results and discussion 1 

4.1 Overview of LMDI results for ANI 2 

As shown in Figure 5, ANI showed a declining trend except during stage 2. 3 

Overall, over the past 20 years, the four effects all caused ANI to decrease. The effect 4 

of efficiency of electrical generation played the leading role in ANI reduction ,while 5 

the geographical distribution of electrical generation together with electrical 6 

generation structure and primary energy composition effects made important 7 

contributions. In detail, the driving forces of ANI reduction differed during the four 8 

time periods. In stage 1, the efficiency of electrical generation was the most powerful 9 

effect in reducing ANI, and geographical distribution effect ranked second, while the 10 

other two effects increased ANI. In stage 2, all effects except for primary energy 11 

composition increased ANI. In stage 3, the efficiency of electrical generation, 12 

electrical generation structure, and primary energy composition effects played roles in 13 

reducing ANI. In stage 4, all four effects contributed to ANI reduction in China’s 14 

electrical generation system. 15 

 16 
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 1 

Figure 5. Decomposition results of ANI from electrical generation in China 2 

4.2 Discussion of drivers decreasing ANI 3 

4.2.1 Geographical distribution effect 4 

The geographical distribution effect reflected the change in spatial distribution of 5 

electrical generation on the temporal decreasing trends of ANI. We found that over the 6 

four stages, the geographical distribution effect totally contributed to ANI of -0.05815 7 

kg NOx/MW and ranked the third among all factors on ANI reduction. This indicated 8 

that the changed spatial heterogeneity of electrical generation in China did influence 9 

the decreasing ANI of the Chinese electrical generation system, similar to the 10 

conclusion of Wang et al. (2018b). On the one hand, the national ANI of electrical 11 

generation decreased when provinces with higher ANI produced less electricity and 12 

provinces with lower ANI produced more electricity. On the other hand, national ANI 13 

was increased by provinces with higher ANI producing more electricity. 14 

Over the past 20 years, the cross-regional transmission of electricity has become 15 

a feature of China’s electrical generation and consumption. The implementation of the 16 
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West-East Power Transmission project took surplus electricity in the western 1 

provinces to the eastern and southern provinces (Zeng et al., 2016). The transmission 2 

of power across provinces led to increasing electrical generation in lower ANI 3 

provinces and contributed to China’s continuous ANI decline. A similar effect was 4 

noted in a previous study about power transmission between Laos and Thailand 5 

(Watcharejyothin et al., 2009), but they did not model this effect and quantify its size.  6 

We classified provinces in China into three types by comparing changes in 7 

electrical generation and consumption from 1995 to 2015 (Figure 6). The first type 8 

grouped provinces in which historical electrical generation has been less than 9 

electrical consumption, including Beijing, Chongqing, Liaoning, and Shandong. 10 

These provinces need electricity transmitted from other provinces. Another type 11 

grouped provinces where electrical generation and consumption were variable. Over 12 

four stages, this group featured more electrical consumption than electrical generation, 13 

was expanding, and currently covers ten provinces including Guangdong, Hebei, 14 

Henan, Hunan, Jiangsu, Jiangxi, Qinghai, Shanghai, Tianjin, and Zhejiang. The final 15 

group has had historically higher electrical generation than electrical consumption, 16 

including Anhui, Fujian, Guizhou, Hainan, Hubei, Inner Mongolia, Jilin, Shaanxi, 17 

Shanxi, Sichuan, Xinjiang, and Yunnan. We found that most of the provinces in this 18 

group had lower ANI and transferred more electricity than others with higher ANI. 19 

This indicated that electricity transported from regions of low ANI to those of high 20 

ANI decreased the ANI of the Chinese electrical generation system overall. 21 

 22 
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1 

Figure 6. Differences between electrical generation and electrical demand in 2 

Chinese provinces 3 

When we compared the geographical distribution effect in different stages, we 4 

further found that this effect showed a little change from slightly negative effects in 5 

stages 2 and 3 to the positive effect of reducing ANI in stage 4. We quantified the 6 

contributions of this driver in four stages, which were -0.042189, 0.015701, 0.004521, 7 

and -0.03618 kg NOx/MW, respectively. According to these results, we observed that 8 

the geographical distribution effect was not significant in the rapid growth stage of 9 

electrical generation regardless of whether the provincial ANI of the electrical 10 
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generation system was high or low. When all provinces are in a rapid economic 1 

growth phase, electrical generation will increase dramatically and would render the 2 

effect of the cross-regional transmission of electricity on ANI insignificant. 3 

Something about this effect should be mentioned and cannot not be deemed 4 

negligible. We know that the increasing effect of the geographic distribution of 5 

electrical generation contributes to decreases in the ANI of the electrical generation 6 

system, but transferred amounts of NOx emissions related to this effect could still 7 

impose additional reduction costs and even environmental health risks for generators. 8 

Consequently we should give additional attention to the negative impacts caused by 9 

future cross-province electrical transmission.  10 

4.2.2 Electrical generation structure effect  11 

The electrical generation structure usually includes thermal and 12 

renewable-energy (Hasanuzzaman et al., 2017, Huang et al., 2017). Thermal power 13 

has a higher NOx generation than other primary energy, whereas hydro, wind and 14 

nuclear power are considered to be “close-to-zero NOx generation” (Liu., 2017). In 15 

China, thermal power always plays a dominant role in the electrical generation 16 

structure (Xie et al., 2019; Yan et al., 2017) and has a significant influence on the NOx 17 

emissions of the electrical generation system. We quantified electrical generation 18 

structure effects by using the thermal power proportion and found that this effect 19 

decreased the ANI by 0.18418 kg NOx/MWh from 1995 to 2015 and was relatively 20 

significant in reducing ANI.  21 

We found that this effect has changed from a positive to an inhibiting influence 22 
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on ANI over the four stages. According to the contributions of the electrical 1 

generation structure effect to ANI reduction, which were 0.018263, 0.113990, 2 

-0.079951, and -0.23648 kg NOx/MW in four stages, respectively, we observed that 3 

the thermal power proportion started to reduce ANI after 2010. In China, thermal 4 

power continued to play a dominant role in the electrical generation structure, 5 

accounting for 74.37% of the total amount of electrical generation in 2016 (China 6 

Electric Power Yearbook, 2017); however, we observed that the proportion of thermal 7 

power began to show a downward trend over the peak proportion in stage 2. In 8 

contrast, the proportion of renewable energy electrical generation increased from 9 

17.76% in 2005 to 26.6% in 2015. The increasing installed capacity of renewable 10 

energy in China provides a potential for cross-regional transmission of renewable 11 

energy power (Xie et al., 2019). According to Figure 7, the installed capacity of 12 

China’s renewable energy electrical generation reached 650 million kW in 2017, 13 

whereas generated electricity only reached 170 million kW. All of the above factors 14 

affect the electrical generation structure in China. 15 

We found that the changing effect size of thermal power became the fastest 16 

growing contributor to the reduction of ANI after 2010, although the proportion of 17 

thermal power did not drastically decrease. The reason for this is the massive scale of 18 

thermal power in China. A minor decrease in the proportion of the total amount of 19 

power generation using thermal power can cause a significant effect on the ANI of the 20 

electrical generation system.  21 
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 1 

Figure 7. Structure of power installation and generation in 2017 2 

4.2.3 Efficiency of the electrical generation effect 3 

The effect of electrical generation efficiency related to thermal power utilization 4 

reflected the influence of thermal power generation technology innovation and could 5 

play a significant effect in decreasing the ANI of the power generation system. We 6 

quantified the effect size of the efficiency of electrical generation and found that it 7 

reduced ANI by 1.25379 kg NOx/MWh in total over four stages. Compared with the 8 

other effects, we found that the efficiency of electrical generation effect was the most 9 

important driving force in reducing ANI (Figure 1). This finding indicated that the 10 

innovation of thermal power technology was the most efficient way to reduce China’s 11 

ANI over the past 20 years (Ma et al., 2017).  12 

We quantified the effect size in different stages, which are -0.621819, 0.221077, 13 

-0.533771, and -0.31928 kg NOx/MWh, respectively. We found that the efficiency of 14 

electrical generation effect shows an inhibiting influence on ANI in all stages other 15 

than stage 2, which relates to the rapid growth of energy-intensive industries since 16 

2001 and did not influence the innovation of thermal power generation technology. 17 

This phenomenon was not observed after 2005 because China made many 18 
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improvements in emissions reduction (Ding et al., 2017), which increased its reducing 1 

effect on ANI.  2 

We have observed that the inhibiting influence of the efficiency of electrical 3 

generation effect on ANI started to show a downward trend after 2010. This 4 

phenomenon is mainly caused by the technological improvement of power generation 5 

(Peng et al., 2018) in order to gradually narrow the gap of the electrical generation 6 

efficiency between China and developed countries such as Japan (Wang et al., 2018a), 7 

listed in Table 1. Initiatives including the closure of old inefficient plants and 8 

encouraging more energy-conservation technologies (Zhang et al., 2013) continuously 9 

improve utilization efficiency in China’s thermal power sector. 10 

Table 1. Gross coal consumption rate for fossil-energy power plants 11 

(gce/kW·h) in China and Japan 12 

Country 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 

China 392 379 363 343 312 308 305 305 300 297 

Japan 317 315 303 301 294 295 394 291 287 — 

Data source: China Energy Statistical Yearbook (2016) 13 

4.2.4 Primary energy composition effect 14 

Thermal power is generated mainly from three primary energy types including 15 

coal products, oil products, and natural gas (Hasanuzzaman et al., 2017). Compared 16 

with coal and oil, natural gas has greater benefits for improving the efficiency of 17 

electrical generation and generating less NOx overall (Liu et al., 2017). We quantified 18 

the effect size of the changed composition of primary energy into thermal power and 19 
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found that it reduced ANI by 0.03984 kg NOx/MWh from 1995 to 2015. This result 1 

indicated that the changes in fuel structure affected reduction of ANI, though its effect 2 

size was much smaller than other effects. After we further decomposed the effect size 3 

of the primary energy composition of thermal power on ANI in the four stages, which 4 

are 0.012231, -0.005294, -0.016814, and -0.02996 kg NOx/MWh, respectively, we 5 

found that the inhibiting effect size has shown a gradually increasing trend since 6 

2000.  7 

The increasingly positive role played by the primary energy composition effect 8 

was related to the optimization of the fuel structure of thermal power. Comparing the 9 

changed proportions of different primary energy types (Figure 8), we observed that 10 

China’s coal-fired power generation proportion increased from 94.64 to 96.79% from 11 

1995 to 2015, and natural gas power generation increased gradually from 0.32 to 12 

3.07%, while power generation from oil products decreased from 5.04 to 0.14%.  13 

 14 

Figure 8. Primary energy composition of thermal power from 1995 to 2015 15 

In future, expanding natural gas power and natural gas’s total installed capacity 16 

(NDRC, 2016) in China will further increase the proportion of natural gas in electrical 17 
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generation and have a much increased effect on inhibition of NOx emissions (Man et 1 

al., 2018) and ANI in China. 2 

5. Conclusions  3 

China has the largest electrical generation system in the world and plays an 4 

important role in reducing NOx emissions related to energy consumption. To explore 5 

the NOx emissions efficiency of the Chinese electrical generation system, we first 6 

estimated ANI and characterized its temporal trends and spatial changes from 1995 to 7 

2015. We found that with China’s growing scale and changing spatial distribution of 8 

electricity generation and consumption, the total amount of NOx generation from the 9 

power industry has increased. In contrast, the ANI of the Chinese electrical generation 10 

system steadily decreased from 4.49 kg/MWh in 1995 to 3.00 kg/MWh in 2015. 11 

Furthermore, this study quantified the driving forces of ANI reduction in the 12 

Chinese electrical generation system and found that of all factors, the efficiency of 13 

electrical generation, related to the influence of technological innovations on low NOx 14 

emissions from thermal power, had the most significant impact on the reduction of 15 

ANI in China; however, this effect has shown a decreasing trend since 2010. In 16 

contrast, the effect of electricity generation structure has been ranked second in 17 

importance among overall reduction factors and showed a gradually increasing trend. 18 

Significantly, the above-findings could bring researchers important insights into the 19 

changing driving mechanism of ANI reduction in China, and provides China with 20 

crucial guidance on how to reduce NOx emissions by balancing the future roles of 21 

driving factors.  22 
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We found that the primary energy composition of the electrical generation 1 

system only slightly affected changes in ANI but that this effect on ANI showed a 2 

gradual increasing trend and was the only inhibitory effect on ANI in stage 2. This 3 

finding indicates that China still faces the important challenge of adjusting the 4 

primary energy input structure for thermal power system. This finding provides 5 

another significant indication that China should move faster than ever and give full 6 

attention to the long-term plan to transition to a cleaner primary energy structure. This 7 

approach will be a fundamental means of keeping this positive effect on ANI 8 

reduction and expanding this emerging trend in the future. 9 

Moreover, we observe that increasing numbers of provinces in China have 10 

changed from electricity provider into electricity consumer over the past 20 years, 11 

which results in a new geographical distribution of electricity generation. We found 12 

that this changed geographical distribution was a non-negligible factor in reducing the 13 

ANI of the Chinese electrical generation system; its effect is even more significant 14 

than that of the primary energy composition. These interesting results have not been 15 

mentioned in previous studies and are meaningful for understanding the NOx emission 16 

impact of electricity transmission across provinces in China, which closely links with 17 

the changing geographical distribution of electricity generation. This finding supports 18 

the position that it will be helpful to continuously decrease ANI by increasing the 19 

share of electrical generation in low-ANI provinces. However, we should not leave off 20 

negative effects, including increased regional NOx emissions and abatement costs in 21 

provinces generating more electricity for transmitting to other provinces. 22 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

25 

We suggest that China should give priority to continual future improvements in 1 

the ANI of the electrical generation system. China might incorporate the indicator of 2 

ANI into policies related to NOx emissions and manage ANI as an essential indicator 3 

to improve the efficiency of NOx emissions from the electricity generation. Moreover, 4 

the energy efficiency factor should continue to be of concern because of its currently 5 

dominating influences on NOx reduction in China. At the same time, considering the 6 

narrowing gap in energy efficiency compared with other developed countries, China 7 

should move forward on increasing the share of clean energy and renewable energy in 8 

the current electrical generation system because it will play a more decisive role in the 9 

suppression of ANI in future. Policymakers should focus additional attention on 10 

economic compensation to reduce generators’ cost to abate NOx emissions. 11 
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Highlights 

 The ANI of electrical generation has decreased by 33.18% over the past 20 

years. 

 Electrical generation efficiency inhibited ANI strongly but gradually 

weakened over time. 

 The geographical distribution effect reduced the ANI but transferred 

environmental costs.  

 The electrical generation structure will hopefully affect ANI reduction in 

future. 
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Table 1. Gross coal consumption rate for fossil fuel–fired power plants (gce/kW·h) in China 

and Japan 

Country 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 

China 392 379 363 343 312 308 305 305 300 297 

Japan 317 315 303 301 294 295 394 291 287 — 

Data source: China Energy Statistical Yearbook (2016)  
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