272 research outputs found
Together, yet still not equal? Sex integration in equestrian sport
Sex segregation is a core organising principle of most modern sports and is a key element in the marginalisation and subordination of girls and women in sport and beyond. In this article I explore the only Olympic-level sport which is not organised around sex segregation â equestrian sport â in order to consider the implications of sex integration for female participants. I draw on a study conducted on elite riders that found that although sex integration in equestrian sport does not lead to female participants being excluded from high-level competition, men continue to perform disproportionately well. This suggests that although sex integration may be an important step towards breaking down gender hierarchies in sport, without accompanying wider changes in gender norms and expectations, sex integration alone will not be enough to achieve greater gender equality in equestrian sport
Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments
Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity
Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretative problems
© 2016 Swedish Society for Anthropology and Geography Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt-hammer exposure-age dating (SHD). The patterned ground surfaces exhibit R-value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R-values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early-Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late-Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large-scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non-climatic factors
Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing
We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). Here, we estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2 of the Southern sky. We then use this lensing signal as a proxy for the mean cluster mass of the DES sample. The thermal Sunyaev-Zel'dovich (tSZ) signal, which can contaminate the lensing signal if not addressed, is isolated and removed from the data before obtaining the mass measurement. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we detect the CMB lensing signal at a significance of 12.4Ï, 10.5Ï and 10.2Ï and find the mean cluster masses to be M 200m = 1.66±0.13 [stat.]± 0.03 [sys.], 1.97±0.18 [stat.]± 0.05 [sys.], and 2.11±0.20 [stat.]± 0.05 [sys.]Ă1014 Mâ, respectively. This is a factor of ⌠2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant discrepancies with optical weak-lensing calibrated masses in these bins. We forecast a 5.7% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional ⌠1400 deg2 of observations from the 'Extended' SPT-3G survey
First measurement of the helicity asymmetry E in eta photoproduction on the proton
Results are presented for the first measurement of the double-polarization
helicity asymmetry E for the photoproduction reaction . Data were obtained using the FROzen Spin Target (FROST)
with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of
center-of-mass energy W from threshold to 2.15 GeV and a large range in
center-of-mass polar angle. As an initial application of these data, the
results have been incorporated into the J\"ulich model to examine the case for
the existence of a narrow resonance between 1.66 and 1.70 GeV. The
addition of these data to the world database results in marked changes in the
predictions for the E observable using that model. Further comparison with
several theoretical approaches indicates these data will significantly enhance
our understanding of nucleon resonances
First measurement of the polarization observable E in the pâ(Îłâ,Ï<sup>+</sup>)n reaction up to 2.25 GeV
First results from the longitudinally polarized frozen-spin target (FROST)
program are reported. The double-polarization observable E, for the reaction
, has been measured using a circularly polarized
tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions
were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the
Thomas Jefferson National Accelerator Facility. These polarization data agree
fairly well with previous partial-wave analyses at low photon energies. Over
much of the covered energy range, however, significant deviations are observed,
particularly in the high-energy region where high-L multipoles contribute. The
data have been included in new multipole analyses resulting in updated nucleon
resonance parameters. We report updated fits from the Bonn-Gatchina, J\"ulich,
and SAID groups.Comment: 6 pages, 3 figure
Global integrability of field theories. Proceedings of GIFT 2006, Cockcroft Institute, Daresbury (UK), November 1-3, 2006
This volume contains the conference proceedings of the Workshop on Global Integrability of Field Theories GIFT 2006 (Cockcroft Institute, Daresbury, UK, 11-01-06 11-03-06), which served as the final conference of the European NEST project GIFT. Within its scope, hitherto unrelated results from various domains including algebraic topology, computer algebra, differential Galois theory, integrable systems, formal theory of differential equations and physical field theories were combined
- âŠ