1,425 research outputs found

    Fishes of the Sucarnoochee River System, Alabama and Mississippi

    Get PDF

    Understanding Social and Sexual Networks of Sexual Minority Men and Transgender Women in Guatemala City to Improve HIV Prevention Efforts

    Get PDF
    Sexual minority men and transgender women are disproportionately affected by HIV in Guatemala. Innovative prevention strategies are urgently needed to address these disparities. While social network approaches are frequently used to reach sexual minorities, little is known about the unique network characteristics among sub-groups. We conducted in-depth qualitative interviews with 13 gay-identifying men, eight non-gay-identifying men who have sex with men (MSM) and eight transgender women in Guatemala City. Using narrative and thematic coding procedures, we identified distinct patterns in the size, composition, and overlap between social and sexual networks across groups. Gay-identifying men had the largest, most supportive social networks, predominantly comprising family. For both non-gay-identifying MSM and transgender women, friends and sex clients provided more support. Transgender women reported the smallest social networks, least social support, and the most discrimination. HIV prevention efforts should be tailored to the specific sexual minority population and engage with strong ties

    Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy

    Get PDF
    Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds

    Mutation rate dynamics reflect ecological change in an emerging zoonotic pathogen.

    Get PDF
    Funder: Raymond and Beverly Sackler FoundationFunder: Isaac Newton TrustFunder: Newnham College, University of CambridgeFunder: Medical Research CouncilMutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens

    The medical student

    Full text link
    The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine

    Nutritional Status of Flemish Vegetarians Compared with Non-Vegetarians: A Matched Samples Study

    Get PDF
    The present study compares the nutritional status of vegetarian (V) with non-vegetarian (NV) subjects. A three-day food record and a health questionnaire were completed by 106 V and 106 NV matched for following characteristics: sex, age, BMI, physical activity, tobacco use and alcohol consumption. Total energy intake was not significantly different (men: V: 2,346 ± 685 kcal/d; NV: 2,628 ± 632 kcal/d; p = 0.078; women: V: 1,991 ± 539 kcal/d; NV: 1,973 ± 592 kcal/d; p = 0.849). Macronutrients intake differed significantly between the V and NV subjects for protein (men: V:12.7 ± 2.3 E%; NV:15.3 ± 4.5 E%; p = 0.003; women: V: 13.2 ± 2.3 E%; NV:16.0 ± 4.0 E%; p < 0.001), fat (men: V: 29.3 ± 8.4 E%; NV: 33.8 ± 5.3 E%; p = 0.010; women: V: 29.7 ± 6.9 E%; NV: 34.7 ± 9.0 E%; p < 0.001), and carbohydrate (men: V: 55.3 ± 10.1 E%; NV: 47.4 ± 6.9 E%; p < 0.001; women: V: 55.1 ± 7.6 E%; NV: 47.2 ± 8.2 E%; p < 0.001). The intake of most minerals was significantly different between the V and the NV subjects. V had a lower sodium intake, higher calcium, zinc, and iron intake compared to the NV subjects. Our results clearly indicate that a vegetarian diet can be adequate to sustain the nutritional demands to at least the same degree as that of omnivores. The intakes of the V subjects were closer to the recommendations for a healthy diet when compared to a group of well matched NV subjects

    Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes

    Get PDF
    Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio

    Chromosomal radiosensitivity and acute radiation side effects after radiotherapy in tumour patients - a follow-up study

    Get PDF
    Radiotherapists are highly interested in optimizing doses especially for patients who tend to suffer from side effects of radiotherapy (RT). It seems to be helpful to identify radiosensitive individuals before RT. Thus we examined aberrations in FISH painted chromosomes in in vitro irradiated blood samples of a group of patients suffering from breast cancer. In parallel, a follow-up of side effects in these patients was registered and compared to detected chromosome aberrations. METHODS: Blood samples (taken before radiotherapy) were irradiated in vitro with 3 Gy X-rays and analysed by FISH-painting to obtain aberration frequencies of first cycle metaphases for each patient. Aberration frequencies were analysed statistically to identify individuals with an elevated or reduced radiation response. Clinical data of patients have been recorded in parallel to gain knowledge on acute side effects of radiotherapy. RESULTS: Eight patients with a significantly elevated or reduced aberration yield were identified by use of a t-test criterion. A comparison with clinical side effects revealed that among patients with elevated aberration yields one exhibited a higher degree of acute toxicity and two patients a premature onset of skin reaction already after a cumulative dose of only 10 Gy. A significant relationship existed between translocations in vitro and the time dependent occurrence of side effects of the skin during the therapy period. CONCLUSIONS: The results suggest that translocations can be used as a test to identify individuals with a potentially elevated radiosensitivity

    Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish

    Get PDF
    Multiple signaling pathways control the specification of endothelial cells (ECs) to become arteries or veins during vertebrate embryogenesis. Current models propose that a cascade of Hedgehog (Hh), vascular endothelial growth factor (VEGF), and Notch signaling acts instructively on ECs to control the choice between arterial or venous fate. Differences in the phenotypes induced by Hh, VEGF, or Notch inhibition suggest that not all of the effects of Hh on arteriovenous specification are mediated by VEGF. We establish that full derepression of the Hh pathway in ptc1;ptc2 mutants converts the posterior cardinal vein into a second arterial vessel that manifests intact arterial gene expression, intersegmental vessel sprouting, and HSC gene expression. Importantly, although VEGF was thought to be absolutely essential for arterial fates, we find that normal and ectopic arterial differentiation can occur without VEGF signaling in ptc1;ptc2 mutants. Furthermore, Hh is able to bypass VEGF to induce arterial differentiation in ECs via the calcitonin receptor-like receptor, thus revealing a surprising complexity in the interplay between Hh and VEGF signaling during arteriovenous specification. Finally, our experiments establish a dual function of Hh during induction of runx1+ HSCs

    The effects of knee joint angle on neuromuscular activity during electrostimulation in healthy older adults

    Get PDF
    Introduction Electrostimulation devices stimulate the common peroneal nerve, producing a calf muscle-pump action to promote venous circulation. Whether knee joint angle influences calf neuromuscular activity remains unclear. Our aim was to determine the effects of knee joint angle on lower limb neuromuscular activity during electrostimulation. Methods Fifteen healthy, older adults underwent 60 min of electrostimulation, with the knee joint at three different angles (0°, 45° or 90° flexion; random order; 20 min each). Outcome variables included electromyography of the peroneus longus, tibialis anterior and gastrocnemius medialis and lateralis and discomfort. Results Knee angle did not influence tibialis anterior and peroneus longus neuromuscular activity during electrostimulation. Neuromuscular activity was greater in the gastrocnemius medialis (p = 0.002) and lateralis (p = 0.002) at 90°, than 0° knee angle. Electrostimulation intensity was positively related to neuromuscular activity for each muscle, with a knee angle effect for the gastrocnemius medialis (p = 0.05). Conclusion Results suggest that during electrostimulation, knee joint angle influenced gastrocnemii neuromuscular activity; increased gastrocnemius medialis activity across all intensities (at 90°), when compared to 0° and 45° flexion; and did not influence peroneus longus and tibialis anterior activity. Greater electrostimulation-evoked gastrocnemii activity has implications for producing a more forceful calf muscle-pump action, potentially further improving venous flow
    • …
    corecore