348 research outputs found

    Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    Get PDF
    As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects

    Intrinsic noise-induced phase transitions: beyond the noise interpretation

    Get PDF
    We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Ito vs. Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Ito. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau type model. A detailed discussion of new numerical algorithms used in both interpretations is also presented.Comment: 9 pages, 8 figures, to be published in Phys. Rev.

    Nonequilibrium wetting transitions with short range forces

    Full text link
    We analyze within mean-field theory as well as numerically a KPZ equation that describes nonequilibrium wetting. Both complete and critical wettitng transitions were found and characterized in detail. For one-dimensional substrates the critical wetting temperature is depressed by fluctuations. In addition, we have investigated a region in the space of parameters (temperature and chemical potential) where the wet and nonwet phases coexist. Finite-size scaling analysis of the interfacial detaching times indicates that the finite coexistence region survives in the thermodynamic limit. Within this region we have observed (stable or very long-lived) structures related to spatio-temporal intermittency in other systems. In the interfacial representation these structures exhibit perfect triangular (pyramidal) patterns in one (two dimensions), that are characterized by their slope and size distribution.Comment: 11 pages, 5 figures. To appear in Physical Review

    Optic nerve head and retinal abnormalities associated with congenital fibrosis of the extraocular muscles

    Get PDF
    Congenital fibrosis of the extraocular muscles (CFEOM) is a congenital cranial dysinnervation disorder caused by developmental abnormalities affecting cranial nerves/nuclei innervating the extraocular muscles. Autosomal dominant CFEOM arises from heterozygous missense mutations of KIF21A or TUBB3. Although spatiotemporal expression studies have shown KIF21A and TUBB3 expression in developing retinal ganglion cells, it is unclear whether dysinnervation extends beyond the oculomotor system. We aimed to investigate whether dysinnervation extends to the visual system by performing high-resolution optical coherence tomography (OCT) scans characterizing retinal ganglion cells within the optic nerve head and retina. Sixteen patients with CFEOM were screened for mutations in KIF21A, TUBB3, and TUBB2B. Six patients had apparent optic nerve hypoplasia. OCT showed neuro-retinal rim loss. Disc diameter, rim width, rim area, and peripapillary nerve fiber layer thickness were significantly reduced in CFEOM patients compared to controls (p < 0.005). Situs inversus of retinal vessels was seen in five patients. Our study provides evidence of structural optic nerve and retinal changes in CFEOM. We show for the first time that there are widespread retinal changes beyond the retinal ganglion cells in patients with CFEOM. This study shows that the phenotype in CFEOM extends beyond the motor nerves

    Photochemically reduced polyoxometalate assisted generation of silver and gold nanoparticles in composite films: a single step route

    Get PDF
    A simple method to embed noble metal (Ag, Au) nanoparticles in organic–inorganic nanocomposite films by single step method is described. This is accomplished by the assistance of Keggin ions present in the composite film. The photochemically reduced composite film has served both as a reducing agent and host for the metal nanoparticles in a single process. The embedded metal nanoparticles in composites film have been characterized by UV–Visible, TEM, EDAX, XPS techniques. Particles of less than 20 nm were readily embedded using the described approach, and monodisperse nanoparticles were obtained under optimized conditions. The fluorescence experiments showed that embedded Ag and Au nanoparticles are responsible for fluorescence emissions. The described method is facile and simple, and provides a simple potential route to fabricate self-standing noble metal embedded composite films

    Dynamic ensemble prediction of cognitive performance in spaceflight

    Get PDF
    During spaceflight, astronauts face a unique set of stressors, including microgravity, isolation, and confinement, as well as environmental and operational hazards. These factors can negatively impact sleep, alertness, and neurobehavioral performance, all of which are critical to mission success. In this paper, we predict neurobehavioral performance over the course of a 6-month mission aboard the International Space Station (ISS), using ISS environmental data as well as self-reported and cognitive data collected longitudinally from 24 astronauts. Neurobehavioral performance was repeatedly assessed via a 3-min Psychomotor Vigilance Test (PVT-B) that is highly sensitive to the effects of sleep deprivation. To relate PVT-B performance to time-varying and discordantly-measured environmental, operational, and psychological covariates, we propose an ensemble prediction model comprising of linear mixed effects, random forest, and functional concurrent models. An extensive cross-validation procedure reveals that this ensemble outperforms any one of its components alone. We also identify the most important predictors of PVT-B performance, which include an individual's previous PVT-B performance, reported fatigue and stress, and temperature and radiation dose. This method is broadly applicable to settings where the main goal is accurate, individualized prediction of human behavior involving a mixture of person-level traits and irregularly measured time series

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites
    corecore