136 research outputs found

    Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film

    Get PDF
    UV curing nanoimprint lithography is one of the most promising techniques for the fabrication of micro- to nano-sized patterns on various substrates with high throughput and a low production cost. The UV nanoimprint process requires a transparent template with micro- to nano-sized surface protrusions, having a low surface energy and good flexibility. Therefore, the development of low-cost, transparent, and flexible templates is essential. In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold. Micro- and nano-sized surface protrusion patterns were formed on the fluorinated polymer layer by the hot embossing process from a Si master template. Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process. In this way, the micro- to nano-sized patterns of the original master Si template were replicated on various substrates, including a flat Si substrate and curved acryl substrate, with high fidelity using UV nanoimprint lithography

    TRPA1 Mediates Mechanical Currents in the Plasma Membrane of Mouse Sensory Neurons

    Get PDF
    Mechanosensitive channels serve as essential sensors for cells to interact with their environment. The identity of mechanosensitive channels that underlie somatosensory touch transduction is still a mystery. One promising mechanotransduction candidate is the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel. To determine the role of TRPA1 in the generation of mechanically-sensitive currents, we used dorsal root ganglion (DRG) neuron cultures from adult mice and applied rapid focal mechanical stimulation (indentation) to the soma membrane. Small neurons (diameter <27 µm) were studied because TRPA1 is functionally present in these neurons which largely give rise to C-fiber afferents in vivo. Small neurons were classified by isolectin B4 binding

    Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans

    Get PDF
    In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies

    Interneuronal mechanisms for learning-induced switch in a sensory response that anticipates changes in behavioural outcomes

    Get PDF
    Sensory cues in the natural environment predict reward or punishment, important for survival. For example, the ability to detect attractive tastes indicating palatable food is essential for foraging while the recognition of inedible substrates prevents harm. While some of these sensory responses are innate, they can undergo fundamental changes due to prior experience associated with the stimulus. However, the mechanisms underlying such behavioral switching of an innate sensory response at the neuron and network levels require further investigation. We used the model learning system of Lymnaea stagnalis1, 2, 3 to address the question of how an anticipated aversive outcome reverses the behavioral response to a previously effective feeding stimulus, sucrose. Key to the switching mechanism is an extrinsic inhibitory interneuron of the feeding network, PlB (pleural buccal4,5), which is inhibited by sucrose to allow a feeding response. After multi-trial aversive associative conditioning, pairing sucrose with strong tactile stimuli to the head, PlB’s firing rate increases in response to sucrose application to the lips and the feeding response is suppressed; this learned response is reversed by the photoinactivation of a single PlB. A learning-induced persistent change in the cellular properties of PlB that results in an increase rather than a decrease in its firing rate in response to sucrose provides a neurophysiological mechanism for this behavioral switch. A key interneuron, PeD12 (Pedal-Dorsal 12), of the defensive withdrawal network5,6 does not mediate the conditioned suppression of feeding, but its facilitated output contributes to the sensitization of the withdrawal response

    The signaling lipid sphingosine 1-phosphate regulates mechanical pain

    Get PDF
    Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds

    Neural coding in a single sensory neuron controlling opposite seeking behaviours in Caenorhabditis elegans

    Get PDF
    Unveiling the neural codes for intricate behaviours is a major challenge in neuroscience. The neural circuit for the temperature-seeking behaviour of Caenorhabditis elegans is an ideal system to dissect how neurons encode sensory information for the execution of behavioural output. Here we show that the temperature-sensing neuron AFD transmits both stimulatory and inhibitory neural signals to a single interneuron AIY. In this circuit, a calcium concentration threshold in AFD acts as a switch for opposing neural signals that direct the opposite behaviours. Remote control of AFD activity, using a light-driven ion pump and channel, reveals that diverse reduction levels of AFD activity can generate warm- or cold-seeking behaviour. Calcium imaging shows that AFD uses either stimulatory or inhibitory neuronal signalling onto AIY, depending on the calcium concentration threshold in AFD. Thus, dual neural regulation in opposite directions is directly coupled to behavioural inversion in the simple neural circuit

    Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1

    Get PDF
    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses
    corecore