92 research outputs found

    Impact of the atmospheric climate modes on wave climate in the North Atlantic

    Get PDF
    Trabajo presentado en la EGU General Assemby 2014, celebrada del 27 de abril al 2 de mayo de 2014 en Viena (Austria)This study establishes the relationships between the mean modes of atmospheric variability in the North Atlantic and present wave climate. The modes considered, namely the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic Western Russian pattern (EA/WR) and the Scandinavian pattern (SCAN), are obtained from the NOAA Climate Prediction Centre. The wave data sets used consist of buoy records and two high-resolution simulations of significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) forced with ERA-40 (1958-2002) and ERA-INTERIM (1989-2008) wind fields. The results show the winter impact of each mode on wave parameters which are discussed regionally. The NAO and EA pattern increase winter SWH up to 1 m per unit index at the Scottish and Spanish coasts, respectively, during their positive phase; while EA pattern causes clockwise changes of winter MWD up to more than 60 degrees per unit index at the Bay of Biscay during its negative phase. EA/WR and SCAN patterns have a weaker impactPeer Reviewe

    Deep-Ocean dissolved organic matter reactivity along the Mediterranea Sea: does size matter?

    Get PDF
    Original research paperDespite of the major role ascribed to marine dissolved organic matter (DOM) in the global carbon cycle, the reactivity of this pool in the dark ocean is still poorly understood. Present hypotheses, posed within the size-reactivity continuum (SRC) and the microbial carbon pump (MCP) conceptual frameworks, need further empirical support. Here, we provide field evidence of the soundness of the SRC model. We sampled the high salinity core-of-flow of the Levantine Intermediate Water along its westward route through the entire Mediterranean Sea. At selected sites, DOM was size-fractionated in apparent high (aHMW) and low (aLMW) molecular weight fractions using an efficient ultrafiltration cell. A percentage decline of the aHMW DOM from 68–76% to 40–55% was observed from the Levantine Sea to the Strait of Gibraltar in parallel with increasing apparent oxygen utilization (AOU). DOM mineralization accounted for 30±3% of the AOU, being the aHMW fraction solely responsible for this consumption, verifying the SRC model in the field. We also demonstrate that, in parallel to this aHMW DOM consumption, fluorescent humic-like substances accumulate in both fractions and protein-like substances decline in the aLMW fraction, thus indicating that not only size matters and providing field support to the MCP modelHOTMIX (grant number CTM2011–30010-C02 01-MAR and 02-MAR) and the project FERMIO (MINECO, CTM2014-57334-JIN), both co-financed with FEDER funds; (reference BES-2012- 056175) from the Spanish Ministry of Economy, Industry and Competitivenes; the project MODMED from CSIC (PIE, 201730E020) and CSIC Program “Junta para la Ampliación de Estudios” co-financed by the ESF (reference JAE DOC 040)Versión del editor2,92

    The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins

    Get PDF
    Background: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. Principal Findings: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Conclusions: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Variability in storm climate along the Gulf of Cadiz: the role of large scale atmospheric forcing and implications to coastal hazards

    Get PDF
    In the context of increased coastal hazards due to variability in storminess patterns, the danger of coastal damages and/or morphological changes is related to the sum of sea level conditions, storm surge, maximum wave height and run up values. In order to better understand the physical processes that cause the variability of the above parameters a 44 years reanalysis record (HIPOCAS) was used. The HIPOCAS time-series was validated with real wave and sea-level data using linear and vector correlation methods. In the present work changes in the magnitude, duration, frequency and approach direction of the Atlantic storms over the Gulf of Cadiz (SW Iberian Peninsula) were identified by computing various storm characteristics such as maximum wave height, total energy per storm wave direction and storm duration. The obtained time-series were compared with large-scale atmospheric indices such as the North Atlantic Oscillation (NAO) and the East Atlantic pattern. The results show a good correlation between negative NAO values and increased storminess over the entire Gulf of Cadiz. Furthermore, negative NAO values were correlated with high residual sea level values. Finally, a joint probability analysis of storm and sea level analysis resulted in increased probabilities of the two events happening at the same time indicating higher vulnerability of the coast and increased coastal risks. The above results were compared with coastal inundation events that took place over the last winter seasons in the province of Cadiz.info:eu-repo/semantics/publishedVersio
    corecore