130 research outputs found

    The Palmer LTER: A Long-Term Ecological Research Program at Palmer Station, Antarctica

    Get PDF
    THE ANTARCTIC marine ecosystem-the assemblage of plants, animals, ocean, sea ice, and island components south of the Antarctic Convergence is among the largest readily defined ecosystems on Earth (36 X 106 km2 ) (Hedgpeth, 1977; Petit et al., 1991). This ecosystem is composed of an interconnected system of functionally distinct hydrographic and biogeochemical subdivisions (Treguer and Jacques, 1992) and includes open ocean, frontal regions, shelf-slope waters, sea ice, and marginal ice zones. Oceanic, atmospheric, and biogeochemical processes within this system are thought to be globally significant, have been infrequently studied, and are poorly understood relative to more accessible marine ecosystems (Harris and Stonehouse, 1991; Johannessen et al., 1994). The Palmer Long-Term Ecological Research (Palmer LTER) area west of the Antarctic Peninsula (Fig. la) is a complex combination of a coastal/continental shelf zone and a seasonal sea ice zone, because this area is swept by the yearly advance and retreat of sea ice. The Palmer LTER program is a multidisciplinary program established to study this polar marine ecosystem

    Physical and optical properties of the International Simple Glass

    Get PDF
    Radioactive waste immobilization is a means to limit the release of radionuclides from various waste streams into the environment over a timescale of hundreds to many thousands of years. Incorporation of radionuclide-containing wastes into borosilicate glass during vitrification is one potential route to accomplish such immobilization. To facilitate comparisons and assessments of reproducibility across experiments and laboratories, a six-component borosilicate glass (Si, B, Na, Al, Ca, Zr) known as the International Simple Glass (ISG) was developed by international consensus as a compromise between simplicity and similarity to waste glasses. Focusing on a single glass composition with a multi-pronged approach utilizing state-of-the-art, multi-scale experimental and theoretical tools provides a common database that can be used to assess relative importance of mechanisms and models. Here we present physical property data (both published and previously unpublished) on a single batch of ISG, which was cast into individual ingots that were distributed to the collaborators. Properties from the atomic scale to the macroscale, including composition and elemental impurities, phase purity, density, thermal properties, mechanical properties, optical and vibrational properties, and the results of molecular dynamics simulations are presented. In addition, information on the surface composition and morphology after polishing is included. Although the existing literature on the alteration of ISG is not extensively reviewed here, the results of well-controlled static alteration experiments are presented here as a point of reference for other performance investigations

    Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands

    Get PDF
    We report long-term changes in population size of three species of sympatrically breeding pygoscelid penguins: Adélie (Pygoscelis adeliae), chinstrap (Pygoscelis antarctica) and gentoo (Pygoscelis papua ellsworthii) over a 38 year period at Signy Island, South Orkney Islands, based on annual counts from selected colonies and decadal all-island systematic counts of occupied nests. Comparing total numbers of breeding pairs over the whole island from 1978/79 to 2015/16 revealed varying fortunes: gentoo penguin pairs increased by 255%, (3.5% per annum), chinstrap penguins declined by 68% (-3.6% per annum) and Adélie penguins declined by 42% (-1.5% per annum). The chinstrap population has declined steadily over the last four decades. In contrast, Adélie and gentoo penguins have experienced phases of population increase and decline. Annual surveys of selected chinstrap and Adélie colonies produced similar trends from those revealed by island-wide surveys, allowing total island population trends to be inferred relatively well. However, while the annual colony counts of chinstrap and Adélie penguins showed a trend consistent in direction with the results from all-island surveys, the magnitude of estimated population change was markedly different between colony wide and all island counts. Annual population patterns suggest that pair numbers in the study areas partly reflect immigration and emigration of nesting birds between different parts of the island. Breeding success for all three species remained broadly stable over time in the annually monitored colonies. Breeding success rates in gentoo and chinstrap penguins were strongly correlated, despite the differing trends in population size. This study shows the importance of effective, standardised monitoring to accurately determine long-term population trajectories. Our results indicate significant declines in the Adélie and chinstrap penguin populations at Signy Island over the last five decades, and a gradual increase in gentoo breeding pairs

    The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat

    Get PDF
    The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations
    • 

    corecore