8 research outputs found

    Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands

    Get PDF
    Permafrost stores globally significant amounts of carbon (C) which may start to decompose and be released to the atmosphere in form of carbon dioxide (CO 2 ) and methane (CH 4 ) as global warming promotes extensive thaw. This permafrost carbon feedback to climate is currently considered to be the most important carbon-cycle feedback missing from climate models. Predicting the magnitude of the feedback requires a better understanding of how differences in environmental conditions post-thaw, particularly hydrological conditions, control the rate at which C is released to the atmosphere. In the sporadic and discontinuous permafrost regions of north-west Canada, we measured the rates and sources of C released from relatively undisturbed ecosystems, and compared these with forests experiencing thaw following wildfire (well-drained, oxic conditions) and collapsing peat plateau sites (water-logged, anoxic conditions). Using radiocarbon analyses, we detected substantial contributions of deep soil layers and/or previously-frozen sources in our well-drained sites. In contrast, no loss of previously-frozen C as CO 2 was detected on average from collapsed peat plateaus regardless of time since thaw and despite the much larger stores of available C that were exposed. Furthermore, greater rates of new peat formation resulted in these soils becoming stronger C sinks and this greater rate of uptake appeared to compensate for a large proportion of the increase in CH 4 emissions from the collapse wetlands. We conclude that in the ecosystems we studied, changes in soil moisture and oxygen availability may be even more important than previously predicted in determining the effect of permafrost thaw on ecosystem C balance and, thus, it is essential to monitor, and simulate accurately, regional changes in surface wetness

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Arctic browning: impacts of extreme events on vegetation and carbon balance in high latitude ecosystems

    No full text
    Climate change is happening faster in the Arctic than almost anywhere else in the world, and Arctic winters are warming especially rapidly. Among the consequences of this is an increase in the frequency of winter extreme events. These include climatic events, such as periods of extreme warmth, and biological events, such as outbreaks of defoliating insects. Such events are already having major impacts on Arctic landscapes, driving vegetation damage and decline across thousands of square kilometres. This loss of biomass and vegetation greenness is termed ‘Arctic browning’. Extreme events which drive Arctic browning are already occurring more frequently and with greater severity: a trend predicted to continue as climate change progresses. However the effects of these events on high latitude ecosystems are not well understood. In particular, their impacts on ecosystem CO2 balance are almost unknown. Furthermore, methods to upscale impacts across Arctic regions, or to assess the regional importance of extreme event-driven browning, do not yet exist. As the Arctic plays an important role in regulating global climate, there is an urgent need to address these uncertainties and to understand the role of extreme events in determining vegetation change and carbon balance at high latitudes. Therefore this thesis assesses the consequences of extreme events and subsequent browning for key ecosystem CO2 fluxes. How impacts vary with event type, across the growing season, and when associated with different browning responses is quantified. In all cases, major reductions in ecosystem CO2 uptake are found. Mechanistic insight into these changes is provided through additional field and remotely sensed data. Finally, the interacting climatic drivers underlying extreme event driven browning are analysed and upscaled. This represents the most comprehensive assessment to date of the causes and consequences of extreme winter events which drive Arctic browning

    Extreme event impacts on CO2 fluxes across a range of high latitude, shrub-dominated ecosystems

    Get PDF
    The Arctic is experiencing an increased frequency of extreme events which can cause landscape-scale vegetation damage. Extreme event-driven damage is an important driver of the decline in vegetation productivity (termed ‘Arctic browning’) which has become an increasingly important component of pan-Arctic vegetation change in recent years. A limited number of studies have demonstrated that event-driven damage can have major impacts on ecosystem CO2 balance, reducing ecosystem carbon sink strength. However, although there are many different extreme events that cause Arctic browning and different ecosystem types that are affected, there is no understanding of how impacts on CO2 fluxes might vary between these, or of whether commonalities in response exist that would simplify incorporation of extreme event-driven Arctic browning into models. To address this, the impacts of different extreme events (frost-drought, extreme winter warming, ground icing and a herbivore insect outbreak) on growing season CO2 fluxes of Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and ecosystem respiration (Reco) were assessed at five sites from the boreal to High Arctic (64◩N-79◩N) in mainland Norway and Svalbard. Event-driven browning had consistent, major impacts across contrasting sites and event drivers, causing site-level reductions of up to 81% of NEE, 51% of GPP and 37% of Reco. Furthermore, at sites where plot-level NDVI (greenness) data were obtained, strong linear relationships between NDVI and NEE were identified, indicating clear potential for impacts of browning on CO2 balance to be consistently, predictably related to loss of greenness across contrasting types of events and heathland ecosystems. This represents the first attempt to compare the consequences of browning driven by different extreme events on ecosystem CO2 balance, and provides an important step towards a better understanding of how ecosystem CO2 balance will respond to continuing climate change at high latitudes.publishedVersio

    Incorporating permafrost into climate mitigation and adaptation policy

    No full text
    Permafrost thaw is drastically altering Arctic lands and creating hazardous conditions for its residents, who are being forced to make difficult and urgent decisions about where and how to live to protect themselves and their lifeways from the impacts of climate change. Permafrost thaw also poses a risk to global climate due to the large pool of organic carbon in permafrost, which, when thawed, can release greenhouse gasses to the atmosphere, exacerbating an already rapidly warming climate. Permafrost thaw has significant implications for adaptation and mitigation policy worldwide. However, it remains almost entirely excluded from policy dialogues at the regional, national, and international levels. Here we discuss current gaps and recommendations for increasing the integration of permafrost science into policy, focusing on three core components: reducing scientific uncertainty; targeting scientific outputs to address climate policy needs; and co-developing just and equitable climate adaptation plans to respond to the hazards of permafrost thaw

    Physiographic Controls and Wildfire Effects on Aquatic Biogeochemistry in Tundra of the Yukon-Kuskokwim Delta, Alaska

    No full text
    Northern high-latitude deltas are hotspots of biogeochemical processing, terrestrial-aquatic connectivity, and, in Alaska’s Yukon-Kuskokwim Delta (YKD), tundra wildfire. Yet, wildfire effects on aquatic biogeochemistry remain understudied in northern delta regions, thus limiting a more comprehensive understanding of high latitude biogeochemical cycles. In this study, we assess wildfire impacts on summertime aquatic biogeochemistry in YKD tundra using a multi year (2015–2019) dataset of water chemistry measurements (n = 406) from five aquatic environments: peat plateau ponds, fen ponds, fen channels, lakes, and streams. We aimed to (i) characterize variation in hydrochemistry among aquatic environments; (ii) determine wildfire effects on hydrochemistry; and (iii) assess post-fire multi-year patterns in hydrochemistry in lakes (lower terrestrial-freshwater connectivity) and fen ponds (higher connectivity). Variation in hydrochemistry among environments was more strongly associated with watershed characteristics (e.g., terrestrial-aquatic connectivity) than wildfire. However, certain hydrochemical constituents showed consistent wildfire effects. Decreases in dissolved organic carbon (DOC) and CO2, and increases in pH, specific conductance, NH4 +, and NO3– indicate that, by combusting soil organic matter, wildfire reduces organics available for hydrologic transport and microbial respiration, and mobilizes nitrogen into freshwaters. Multi-year post-fire variation in specific conductance, DOC, and CO2 in lakes and fen ponds suggest that watershed characteristics underlie ecosystem response and recovery to wildfire in the YKD. Together, these results indicate that increasing tundra wildfire occurrence at northern high latitudes could drive multi-year shifts toward stronger aquatic inorganic nutrient cycling, and that variation in terrain characteristics is likely to underlie wildfire effects on aquatic ecosystems across broader scales

    We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems

    Get PDF
    Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO2, the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions

    Complexity revealed in the greening of the Arctic

    No full text
    As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greening and browning trends are more complex, variable and inherently scale-dependent than previously thought. Here we summarize the complexities of observing and interpreting high-latitude greening to identify priorities for future research. Incorporating satellite and proximal remote sensing with in-situ data, while accounting for uncertainties and scale issues, will advance the study of past, present and future Arctic vegetation change
    corecore