48 research outputs found

    Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species

    Get PDF
    Vertebrate-like sex steroid hormones have been widely detected in mollusks, and numerous experiments have shown the importance of steroids in gonad development. Nevertheless, their signaling pathways in invertebrates have not been uncovered yet. Steroid receptors are an ancient class of transcription factors with multiple roles in not only vertebrates but also invertebrates. Estrogen signaling is thought to have major roles in mollusk physiology, but the full repertoire of estrogen receptors is unknown. We presented the successful cloning of two novel forms of estrogen receptor-like genes. These receptors are present in two closely related species of Mytilus: Mytilus edulis and Mytilus galloprovincialis, commonly known and widely distributed sentinel species. Our phylogenetic analysis revealed that one of these receptors is an estrogen receptor (ER) and the other one is an estrogen-related receptor (ERR). Studies of expression analysis showed that both receptor mRNAs were localized in the oocytes and follicle cells in contact with developing oocytes in the ovary and Sertoli cells in the testis, and in the ciliated cells of the gill. In addition, we have evidence that one (ER) of these may have a capacity to autoregulate its own expression in the gonadal cells by estrogen (E2) and that this gene is responsive to estrogenic compounds

    Autolesiones no suicidas en adolescentes: revisión de los tratamientos psicológicos

    Get PDF
    Self-harm in teenagers has become more important in recent years, given its increased prevalence and the greater risk involved of making a suicidal attempt and developing a borderline personality disorder or a major depressive disorder. We aim to review the literature as to psychological treatments for non-suicidal self-injury (NSSI).  Studies assessing a psychotherapeutic intervention for self-harm have been included.  The results indicate that no treatment for self-harm has demonstrated enough evidence in adolescents. Mentalization based therapy (MBT-A) has shown efficacy in one study and the dialectical behavior therapy (DBT-A) has shown efficacy. However, the variety and heterogeneity of results make it difficult to draw more specific conclusions, such as regards the effective active components. Criteria and instruments in the field of the treatment of NSSI need to be standardized in order to improve the validity and clinical utility of results.Las autolesiones en adolescentes han adquirido mayor relevancia en los últimos años, por el aumento de prevalencia, el mayor riesgo de realizar una tentativa autolítica y de desarrollar un trastorno límite de la personalidad o un trastorno depresivo mayor.  Nuestro objetivo es revisar la bibliografía referente a tratamientos psicológicos para las autolesiones no suicidas (non-suicidal self-injury; NSSI).  Se incluyen estudios que evalúan una intervención psicoterapéutica para el tratamiento de las autolesiones.   Los resultados indican que ningún tratamiento para las autolesiones ha demostrado suficiente evidencia en adolescentes.  La terapia basada en mentalización (MBT-A) ha demostrado eficacia en un estudio y la terapia dialéctica-conductual (DBT-A) ha demostrado efectividad. La variedad y heterogeneidad de resultados dificulta extraer conclusiones más específicas, como cuáles son los componentes activos eficaces.  Valoramos la necesidad de estandarizar criterios e instrumentos en el campo del tratamiento de las autolesiones para mejorar la validez y utilidad de los resultados

    Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass

    Get PDF
    There is a dynamic reciprocity between plants and their environment: soil physiochemical properties influence plant morphology and metabolism, and root morphology and exudates shape the environment surrounding roots. Here, we investigate the reproducibility of plant trait changes in response to three growth environments. We utilized fabricated ecosystem (EcoFAB) devices to grow the model grass Brachypodium distachyon in three distinct media across four laboratories: phosphate-sufficient and -deficient mineral media allowed assessment of the effects of phosphate starvation, and a complex, sterile soil extract represented a more natural environment with yet uncharacterized effects on plant growth and metabolism. Tissue weight and phosphate content, total root length, and root tissue and exudate metabolic profiles were consistent across laboratories and distinct between experimental treatments. Plants grown in soil extract were morphologically and metabolically distinct, with root hairs four times longer than with other growth conditions. Further, plants depleted half of the metabolites investigated from the soil extract. To interact with their environment, plants not only adapt morphology and release complex metabolite mixtures, but also selectively deplete a range of soil-derived metabolites. The EcoFABs utilized here generated high interlaboratory reproducibility, demonstrating their value in standardized investigations of plant traits

    Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries)

    Get PDF
    Maximizing the number of offspring born per female is a key functionality trait in commercial- and/or subsistence-oriented livestock enterprises. Although the number of offspring born is closely associated with female fertility and reproductive success, the genetic control of these traits remains poorly understood in sub-Saharan Africa livestock. Using selection signature analysis performed on Ovine HD BeadChip data from the prolific Bonga sheep in Ethiopia, 41 candidate regions under selection were identified. The analysis revealed one strong selection signature on a candidate region on chromosome X spanning BMP15, suggesting this to be the primary candidate prolificacy gene in the breed. The analysis also identified several candidate regions spanning genes not reported before in prolific sheep but underlying fertility and reproduction in other species. The genes associated with female reproduction traits included SPOCK1 (age at first oestrus), GPR173 (mediator of ovarian cyclicity), HB-EGF (signalling early pregnancy success) and SMARCAL1 and HMGN3a (regulate gene expression during embryogenesis). The genes involved in male reproduction were FOXJ1 (sperm function and successful fertilization) and NME5 (spermatogenesis). We also observed genes such as PKD2L2, MAGED1 and KDM3B, which have been associated with diverse fertility traits in both sexes of other species. The results confirm the complexity of the genetic mechanisms underlying reproduction while suggesting that prolificacy in the Bonga sheep, and possibly African indigenous sheep is partly under the control of BMP15 while other genes that enhance male and female fertility are essential for reproductive fitness

    Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine

    Get PDF
    Remediation of former uranium mining sites represents one of the biggest challenges worldwide that have to be solved in this century. During the last years, the search of alternative strategies involving environmentally sustainable treatments has started. Bioremediation, the use of microorganisms to clean up polluted sites in the environment, is considered one the best alternative. By means of culture-dependent methods, we isolated an indigenous yeast strain, KS5 (Rhodosporidium toruloides), directly from the flooding water of a former uranium mining site and investigated its interactions with uranium. Our results highlight distinct adaptive mechanisms towards high uranium concentrations on the one hand, and complex interaction mechanisms on the other. The cells of the strain KS5 exhibit high a uranium tolerance, being able to grow at 6 mM, and also a high ability to accumulate this radionuclide (350 mg uranium/g dry biomass, 48 h). The removal of uranium by KS5 displays a temperature- and cell viability-dependent process, indicating that metabolic activity could be involved. By STEM (scanning transmission electron microscopy) investigations, we observed that uranium was removed by two mechanisms, active bioaccumulation and inactive biosorption. This study highlights the potential of KS5 as a representative of indigenous species within the flooding water of a former uranium mine, which may play a key role in bioremediation of uranium contaminated sites.This work was supported by the Bundesministerium für Bildung und Forschung grand nº 02NUK030F (TransAqua). Further support took place by the ERDF-co-financed Grants CGL2012-36505 and 315 CGL2014-59616R, Ministerio de Ciencia e Innovación, Spain

    Differential Cerebral Cortex Transcriptomes of Baboon Neonates Consuming Moderate and High Docosahexaenoic Acid Formulas

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS: Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS: These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA

    Metabolomic signatures associated with weight gain and psychosis spectrum diagnoses: A pilot study

    Get PDF
    Psychosis spectrum disorders (PSDs), as well as other severe mental illnesses where psychotic features may be present, like bipolar disorder, are associated with intrinsic metabolic abnormalities. Antipsychotics (APs), the cornerstone of treatment for PSDs, incur additional metabolic adversities including weight gain. Currently, major gaps exist in understanding psychosis illness biomarkers, as well as risk factors and mechanisms for AP-induced weight gain. Metabolomic profiles may identify biomarkers and provide insight into the mechanistic underpinnings of PSDs and antipsychotic-induced weight gain. In this 12-week prospective naturalistic study, we compared serum metabolomic profiles of 25 cases within approximately 1 week of starting an AP to 6 healthy controls at baseline to examine biomarkers of intrinsic metabolic dysfunction in PSDs. In 17 of the case participants with baseline and week 12 samples, we then examined changes in metabolomic profiles over 12 weeks of AP treatment to identify metabolites that may associate with AP-induced weight gain. In the cohort with pre-post data (n = 17), we also compared baseline metabolomes of participants who gained ≥5% baseline body weight to those who gained &lt;5% to identify potential biomarkers of antipsychotic-induced weight gain. Minimally AP-exposed cases were distinguished from controls by six fatty acids when compared at baseline, namely reduced levels of palmitoleic acid, lauric acid, and heneicosylic acid, as well as elevated levels of behenic acid, arachidonic acid, and myristoleic acid (FDR &lt; 0.05). Baseline levels of the fatty acid adrenic acid was increased in 11 individuals who experienced a clinically significant body weight gain (≥5%) following 12 weeks of AP exposure as compared to those who did not (FDR = 0.0408). Fatty acids may represent illness biomarkers of PSDs and early predictors of AP-induced weight gain. The findings may hold important clinical implications for early identification of individuals who could benefit from prevention strategies to reduce future cardiometabolic risk, and may lead to novel, targeted treatments to counteract metabolic dysfunction in PSDs

    Propagation of Rhizopus javanicus Biosorbent

    No full text
    After propagation of Rhizopus javanicus in defined media containing glucose, urea, and mineral salts in deionized distilled water, the ability of the nonliving biomass to sequester cupric ion was assayed. Growth, uptake capacity (saturation uptake at >1 mM Cu(2+) concentration in solution), and biosorptive yield (biomass concentration × uptake capacity) were increased by augmentation of the growth medium with mineral salts once growth was under way. In the stationary phase, the uptake capacity of mycelia, which were normally a poor biosorbent, was improved within 4 h of trace metal addition to the growth medium. Growth of the culture was inhibited by excessive concentrations (0.04 to 40 μM) of metals in the medium in the following order: Cu > Co ≥ Ni > Mn > Mo; zinc was not inhibitory at 40 μM, and chromium was stimulatory at 0.53 μM but slightly inhibitory at higher levels. Iron and potassium phosphate stimulated growth at levels of 0.53 and 40 mM, respectively. When R. javanicus was propagated in a medium with a high salt concentration, exponential growth (0.23 h(−1)) to a biomass concentration of >3 g/liter and a biosorptive yield of >500 μmol/liter was achieved. It is evident that the powerful biosorbent characteristics of Rhizopus biomass led to depletion of available trace minerals in suspension culture, which in turn limited growth
    corecore