190 research outputs found

    Role of Core-collapse Supernovae in Explaining Solar System Abundances of p Nuclides

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for published in The Astrophysical Journal. The Version of Record is available online at: https://doi.org/10.3847/1538-4357/aaa4f7The production of the heavy stable proton-rich isotopes between 74Se and 196Hg - the p nuclides - is due to the contribution from different nucleosynthesis processes, activated in different types of stars. Whereas these processes have been subject to various studies, their relative contributions to Galactic chemical evolution (GCE) are still a matter of debate. Here we investigate for the first time the nucleosynthesis of p nuclides in GCE by including metallicity and progenitor mass-dependent yields of core-collapse supernovae (ccSNe) into a chemical evolution model. We used a grid of metallicities and progenitor masses from two different sets of stellar yields and followed the contribution of ccSNe to the Galactic abundances as a function of time. In combination with previous studies on p-nucleus production in thermonuclear supernovae (SNIa), and using the same GCE description, this allows us to compare the respective roles of SNeIa and ccSNe in the production of p-nuclei in the Galaxy. The γ process in ccSN is very efficient for a wide range of progenitor masses (13 M o-25 M o) at solar metallicity. Since it is a secondary process with its efficiency depending on the initial abundance of heavy elements, its contribution is strongly reduced below solar metallicity. This makes it challenging to explain the inventory of the p nuclides in the solar system by the contribution from ccSNe alone. In particular, we find that ccSNe contribute less than 10% of the solar p nuclide abundances, with only a few exceptions. Due to the uncertain contribution from other nucleosynthesis sites in ccSNe, such as neutrino winds or α-rich freeze out, we conclude that the light p-nuclides 74Se, 78Kr, 84Sr, and 92Mo may either still be completely or only partially produced in ccSNe. The γ-process accounts for up to twice the relative solar abundances for 74Se in one set of stellar models and 196Hg in the other set. The solar abundance of the heaviest p nucleus 196Hg is reproduced within uncertainties in one set of our models due to photodisintegration of the Pb isotopes 208,207,206Pb. For all other p nuclides, abundances as low as 2% of the solar level were obtained.Peer reviewe

    The 106Cd(α, α)106Cd elastic scattering in a wide energy range for γ process studies

    Get PDF
    Date of Acceptance: 15/04/2015Alpha elastic scattering angular distributions of the 106Cd(α, α)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the α + nucleus optical potential parameter sets. Furthermore, the new high precision angular distributions, together with the data available from the literature were used to study the energy dependence of the locally optimized α + nucleus optical potential in a wide energy region ranging from ELab=27.0MeV down to 16.1 MeV.The potentials under study are a basic prerequisite for the prediction of α-induced reaction cross sections and thus, for the calculation of stellar reaction rates used for the astrophysical γ process. Therefore, statistical model predictions using as input the optical potentials discussed in the present work are compared to the available 106Cd + alpha cross section data.Peer reviewe

    A high resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy

    Get PDF
    For the first time we show the detailed late-stage chemical evolution history of small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high resolution (R\sim20000) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrically selected red giant branch stars in the central 25' of the Fornax dwarf spheroidal galaxy. We present abundances of \alfe\ (Mg, Si, Ca and Ti), iron-peak elements (Fe, Ni and Cr) and heavy elements (Y, Ba, La, Nd and Eu). Our sample was randomly selected, and is clearly dominated by the younger and more metal rich component of Fornax which represents the major fraction of stars in the central region. This means that the majority of our stars are 1-4 Gyr old, and thus represent the end phase of chemical evolution in this system. Our sample of stars has unusually low [α\alpha/Fe], [Ni/Fe] and [Na/Fe] compared to the Milky Way stellar populations at the same [Fe/H]. The particularly important role of stellar winds from low metallicity AGB stars in the creation of s-process elements is clearly seen from the high [Ba/Y]. Furthermore, we present evidence for an s-process contribution to Eu.Comment: 40 pages, 20 figures, accepted for publication in A&

    Heavy elements nucleosynthesis on accreting white dwarfs: building seeds for the p-process

    Get PDF
    The origin of the proton-rich trans-iron isotopes in the Solar system is still uncertain. Single-degenerate thermonuclear supernovae (SNIa) with n-capture nucleosynthesis seeds assembled in the external layers of the progenitor's rapidly accreting white dwarf (RAWD) phase may produce these isotopes. We calculate the stellar structure of the accretion phase of five white dwarf (WD) models with initial masses >= 0.85 M-circle dot using the stellar code MESA The near-surface layers of the 1, 1.26, 1.32 and 1.38 M-circle dot models are most representative of the regions in which the bulk of the p nuclei are produced during SNIa explosions, and for these models we also calculate the neutron-capture nucleosynthesis in the external layers. Contrary to previous RAWD models at lower mass, we find that the H-shell flashes are the main site of n-capture nucleosynthesis. We find high neutron densities up to several 10(15) cm(-3) in the most massive WDs. Through the recurrence of the H-shell flashes these intermediate neutron densities can be sustained effectively for a long time leading to high-neutron exposures with a strong production up to Pb. Both the neutron density and the neutron exposure increase with increasing the mass of the accreting WD. Finally, the SNIa nucleosynthesis is calculated using the obtained abundances as seeds. We obtain solar to supersolar abundances for p-nuclei with A > 96. Our models show that SNIa are a viable p-process production site

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    Beryllium and Alpha-Element Abundances in a Large Sample of Metal-Poor Stars

    Full text link
    The light elements, Li, Be, and B, provide tracers for many aspects of astronomy including stellar structure, Galactic evolution, and cosmology. We have taken spectra of Be in 117 metal-poor stars ranging in metallicity from [Fe/H] = -0.5 to -3.5 with Keck I + HIRES at a resolution of 42,000 and signal-to-noise ratios of near 100. We have determined the stellar parameters spectroscopically from lines of Fe I, Fe II, Ti I and Ti II. The abundances of Be and O were derived by spectrum synthesis techniques, while abundances of Fe, Ti, and Mg were found from many spectral line measurements. There is a linear relationship between [Fe/H] and A(Be) with a slope of +0.88 +-0.03 over three orders of magnitude in [Fe/H]. We fit the relationship between A(Be) and [O/H] with both a single slope and with two slopes. The relationship between [Fe/H] and [O/H] seems robustly linear and we conclude that the slope change in Be vs. O is due to the Be abundance. Although Be is a by-product of CNO, we have used Ti and Mg abundances as alpha-element surrogates for O in part because O abundances are rather sensitive to both stellar temperature and surface gravity. We find that A(Be) tracks [Ti/H] very well with a slope of 1.00 +-0.04. It also tracks [Mg/H] very well with a slope of 0.88 +-0.03. We find that there are distinct differences in the relationships of A(Be) and [Fe/H] and of A(Be) and [O/H] for our dissipative stars and our accretive stars. We suggest that the Be in the dissipative stars was primarily formed by GCR spallation and Be in the accretive stars was formed in the vicinity of SN II.Comment: Accepted for Ap.J. Nov. 10, 2011, v. 741 70 pages, 27 figures, 5 table

    Constraints on the Formation of the Galactic Bulge from Na, Al, and Heavy Element Abundances in Plaut's Field

    Get PDF
    We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut-s low extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high resolution (R~25,000), high signal-to-noise (S/N~50-100 pixel-1) spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe]. Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the {\alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly (<1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the potential inner disk clump stars exhibit abundance patterns more similar to those of the thin and thick disks. Comparisons between the abundance trends at different bulge locations suggest that the inner and outer bulge formed on similar timescales. However, we find evidence of some abundance differences between the most metal-poor and metal-rich stars in various bulge fields. The data also indicate that the halo may have had a more significant impact on the outer bulge initial composition than the inner bulge composition. The [Na/Fe] and to a lesser extent [La/Fe] abundances further indicate that the metal-poor bulge, at least at ~1 kpc from the Galactic center, and thick disk may not share an identical chemistry.Comment: Accepted for publication in ApJ; 66 pages, 17 figures, 3 tables; prior to publication, data tables in electronic form will be made available upon reques

    Women Scientists Who Made Nuclear Astrophysics

    Get PDF
    Female role models reduce the impact on women of stereotype threat, i.e., of being at risk of conforming to a negative stereotype about one's social, gender, or racial group [1,2]. This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible [3]. In response to this situation, we present a selection of twelve outstanding women who helped to develop nuclear astrophysics

    VLT Observations of Turnoff stars in the Globular Cluster NGC 6397

    Get PDF
    VLT-UVES high resolution spectra of seven turnoff stars in the metal-poor globular cluster NGC 6397 have been obtained. Atmospheric parameters and abundances of several elements (Li, Na, Mg, Ca, Sc, Ti, Cr, Fe, Ni, Zn and Ba) were derived for program stars. The mean iron abundance is [Fe/H] = -2.02, with no star-to-star variation. The mean abundances of the alpha-elements (Ca, Ti) and of the iron-peak elements (Sc, Cr, Ni) are consistent with abundances derived for field stars of similar metallicity. Magnesium is also almost solar, consistent with the values found by Idiart & Th\'evenin (2000) when non-LTE effects (NLTE hereafter) are taken into account. The sodium abundance derived for five stars is essentially solar, but one object (A447) is clearly Na deficient. These results are compatible with the expected abundance range estimated from the stochastic evolutionary halo model by Argast et al. (2000) when at the epoch of [Fe/H] \sim -2 the interstellar medium is supposed to become well-mixed.Comment: to appear in A&
    corecore