72 research outputs found

    Characterization of HLH-29’s reproductive functions in Caenorhabditis elegans

    Get PDF

    Modelling of FG-TPMS plates

    Full text link
    Functionally graded porous plates have been validated as remarkable lightweight structures with excellent mechanical characteristics and numerous applications. With inspiration from the high strength-to-volume ratio of triply periodic minimal surface (TPMS) structures, a new model of porous plates, which is called a functionally graded TPMS (FG-TPMS) plate, is investigated in this paper. Three TPMS architectures including Primitive (P), Gyroid (G), and wrapped package-graph (IWP) with different graded functions are presented. To predict the mechanical responses, a new fitting technique based on a two-phase piece-wise function is employed to evaluate the effective moduli of TPMS structures, including elastic modulus, shear modulus, and bulk modulus. In addition, this function corresponds to the cellular structure formulation in the context of relative density. The separated phases of the function are divided by the different deformation behaviors. Furthermore, another crucial mechanical property of porous structure, i.e, Poisson's ratio, is also achieved by a similar fitting technique. To verify the mechanical characteristics of the FG-TPMS plate, the generalized displacement field is modeled by a seventh-order shear deformation theory (SeSDT) and isogeometric analysis (IGA). Numerical examples regarding static, buckling, and free vibration analyses of FG-TPMS plates are illustrated to confirm the reliability and accuracy of the proposed approach. Consequently, these FG-TPMS structures can provide much higher stiffness than the same-weight isotropic plate. The greater stiffness-to-weight ratio of these porous plates compared to the full-weight isotropic ones should be considered the most remarkable feature. Thus, these complex porous structures have numerous practical applications because of these high ratios and their fabrication ability through additive manufacturing (AM) technology.Comment: 27 pages (including references), 15 figures, 12 table

    Internally Controlled, Generic Real-Time PCR for Quantification and Multiplex Real-Time PCR with Serotype-Specific Probes for Serotyping of Dengue Virus Infections

    Get PDF
    Dengue has become a global public health problem and a sensitive diagnostic test for early phase detection can be life saving. An internally controlled, generic real-time PCR was developed and validated by testing serial dilutions of a DENV positive control RNA in the presence of a fixed amount of IC with results showing a good linearity (R2 = 0.9967) and a LOD of at least 1.95 × 104 copies/mL. Application of the generic PCR on 136 patient samples revealed a sensitivity of 95.8% and specificity of 100%. A newly developed multiplex real-time PCR with serotype-specific probes allowed the serotyping of DENV for 80 out of 92 (87%) generic real-time PCR positive patients. Combined these real-time PCRs offer a convenient diagnostic tool for the sensitive and specific quantification of DENV in clinical specimens with the possibility for serotyping

    Combination Antifungal Therapy for Cryptococcal Meningitis

    Get PDF
    Background Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days. Methods We conducted a randomized, three-group, open-label trial of induction therapy for cryptococcal meningitis in patients with human immunodeficiency virus infection. All patients received amphotericin B at a dose of 1 mg per kilogram of body weight per day; patients in group 1 were treated for 4 weeks, and those in groups 2 and 3 for 2 weeks. Patients in group 2 concurrently received flucytosine at a dose of 100 mg per kilogram per day for 2 weeks, and those in group 3 concurrently received fluconazole at a dose of 400 mg twice daily for 2 weeks. Results A total of 299 patients were enrolled. Fewer deaths occurred by days 14 and 70 among patients receiving amphotericin B and flucytosine than among those receiving amphotericin B alone (15 vs. 25 deaths by day 14; hazard ratio, 0.57; 95% confidence interval [CI], 0.30 to 1.08; unadjusted P=0.08; and 30 vs. 44 deaths by day 70; hazard ratio, 0.61; 95% CI, 0.39 to 0.97; unadjusted P=0.04). Combination therapy with fluconazole had no significant effect on survival, as compared with monotherapy (hazard ratio for death by 14 days, 0.78; 95% CI, 0.44 to 1.41; P=0.42; hazard ratio for death by 70 days, 0.71; 95% CI, 0.45 to 1.11; P=0.13). Amphotericin B plus flucytosine was associated with significantly increased rates of yeast clearance from cerebrospinal fluid (−0.42 log10 colony-forming units [CFU] per milliliter per day vs. −0.31 and −0.32 log10 CFU per milliliter per day in groups 1 and 3, respectively; P<0.001 for both comparisons). Rates of adverse events were similar in all groups, although neutropenia was more frequent in patients receiving a combination therapy. Conclusions Amphotericin B plus flucytosine, as compared with amphotericin B alone, is associated with improved survival among patients with cryptococcal meningitis. A survival benefit of amphotericin B plus fluconazole was not found

    Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation

    Get PDF
    Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show that the core region of solid tumours displayed glutamine deficiency compared with other amino acids. Low glutamine in tumour core regions led to dramatic histone hypermethylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain-containing histone demethylases. Using patient-derived ^(V600E)BRAF melanoma cells, we found that low-glutamine-induced histone hypermethylation resulted in cancer cell dedifferentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and the methyltransferase EZH2 respectively reproduced and attenuated the low-glutamine effects in vitro and in vivo. Thus, intratumoral regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response

    Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation

    Get PDF
    Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show that the core region of solid tumours displayed glutamine deficiency compared with other amino acids. Low glutamine in tumour core regions led to dramatic histone hypermethylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain-containing histone demethylases. Using patient-derived ^(V600E)BRAF melanoma cells, we found that low-glutamine-induced histone hypermethylation resulted in cancer cell dedifferentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and the methyltransferase EZH2 respectively reproduced and attenuated the low-glutamine effects in vitro and in vivo. Thus, intratumoral regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore