149 research outputs found

    Teaching as worship : pedagogy of the spirit in the narratives of Bahai educators

    Get PDF
    "By exploring the presence of Bahai religious principles and secular themes throughout their individual and collective narratives with emphasis on their religious principles, I offer some understanding of how their perception of their role as educators along with their interpretation of religious philosophy, and professional experience help shape their teaching and work environments. Furthermore I compare and contrast the effect of human secularism and religious theory on the academic experiences of teachers and students, utilizing my own narrative as an example. Such an examination also provides an indication of the influence the work of Bahai Faith-Based pedagogues have on the lives of their students and coworkers. Their life stories also provide some indication of the impact of their religious and spiritual thoughts on the communities in which they live. With the modern challenges faced by our society, I found that the narrators' common discourse of peace and unity serve as possible models of leadership for refashioning what I see as a growing national movement towards selfish materialism and global disrespect."--Abstract from author supplied metadata

    Electrical and network neuronal properties are preferentially disrupted in dorsal, but not ventral, medial entorhinal cortex in a mouse model of Tauopathy

    Get PDF
    The entorhinal cortex (EC) is one of the first areas to be disrupted in neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. The responsiveness of individual neurons to electrical and environmental stimuli varies along the dorsal-ventral axis of the medial EC (mEC) in a manner that suggests this topographical organization plays a key role in neural encoding of geometric space. We examined the cellular properties of layer II mEC stellate neurons (mEC-SCs) in rTg4510 mice, a rodent model of neurodegeneration. Dorsoventral gradients in certain intrinsic membrane properties, such as membrane capacitance and afterhyperpolarizations, were flattened in rTg4510 mEC-SCs, while other cellular gradients [e.g., input resistance (Ri), action potential properties] remained intact. Specifically, the intrinsic properties of rTg4510 mEC-SCs in dorsal aspects of the mEC were preferentially affected, such that action potential firing patterns in dorsal mEC-SCs were altered, while those in ventral mEC-SCs were unaffected. We also found that neuronal oscillations in the gamma frequency band (30-80 Hz) were preferentially disrupted in the dorsal mEC of rTg4510 slices, while those in ventral regions were comparatively preserved. These alterations corresponded to a flattened dorsoventral gradient in theta-gamma cross-frequency coupling of local field potentials recorded from the mEC of freely moving rTg4510 mice. These differences were not paralleled by changes to the dorsoventral gradient in parvalbumin staining or neurodegeneration. We propose that the selective disruption to dorsal mECs, and the resultant flattening of certain dorsoventral gradients, may contribute to disturbances in spatial information processing observed in this model of dementia. SIGNIFICANCE STATEMENT: The medial entorhinal cortex (mEC) plays a key role in spatial memory and is one of the first areas to express the pathological features of dementia. Neurons of the mEC are anatomically arranged to express functional dorsoventral gradients in a variety of neuronal properties, including grid cell firing field spacing, which is thought to encode geometric scale. We have investigated the effects of tau pathology on functional dorsoventral gradients in the mEC. Using electrophysiological approaches, we have shown that, in a transgenic mouse model of dementia, the functional properties of the dorsal mEC are preferentially disrupted, resulting in a flattening of some dorsoventral gradients. Our data suggest that neural signals arising in the mEC will have a reduced spatial content in dementia

    Structural analysis of Pt(1 1 1)c(√3 × 5)rect.–CO using photoelectron diffraction

    Get PDF
    Core level shift scanned-energy mode photoelectron diffraction using the two distinct components of the C 1s emission has been used to determine the structure of the Pt(1 1 1)c(√3 × 5)rect.–CO phase formed by 0.6 ML of adsorbed CO. The results confirm earlier assignments of these components to CO in atop and bridging sites, further confirm that the best structural model involves a 2:1 occupation ratio of these two sites, and provides quantitative structural parameter values. In particular the Pt–C chemisorption bondlengths for the atop and bridging sites are, respectively, 1.86 ± 0.02 Å and 2.02 ± 0.04 Å. These values are closely similar to those found in the 0.5 ML coverage c(4 × 2) phase, involving an atop:bridge occupation ratio of 1:1, obtained in earlier quantitative low energy electron diffraction studies. The results also indicate a clear tilt of the molecular axis of atop CO species in this compression phase, consistent with the finding of an earlier electron-stimulated desorption ion angular distribution investigatio

    Targeting the arginine metabolic brake enhances immunotherapy for leukaemia

    Get PDF
    Therapeutic approaches which aim to target Acute Myeloid Leukaemia through enhancement of patients’ immune responses have demonstrated limited efficacy to date, despite encouraging preclinical data. Examination of AML patients treated with azacitidine (AZA) and vorinostat (VOR) in a Phase II trial, demonstrated an increase in the expression of Cancer‐Testis Antigens (MAGE, RAGE, LAGE, SSX2 and TRAG3) on blasts and that these can be recognised by circulating antigen‐specific T cells. Although the T cells have the potential to be activated by these unmasked antigens, the low arginine microenvironment created by AML blast Arginase II activity acts a metabolic brake leading to T cell exhaustion. T cells exhibit impaired proliferation, reduced IFN‐γ release and PD‐1 up‐regulation in response to antigen stimulation under low arginine conditions. Inhibition of arginine metabolism enhanced the proliferation and cytotoxicity of anti‐NY‐ESO T cells against AZA/VOR treated AML blasts, and can boost anti‐CD33 Chimeric Antigen Receptor‐T cell cytotoxicity. Therefore, measurement of plasma arginine concentrations in combination with therapeutic targeting of arginase activity in AML blasts could be a key adjunct to immunotherapy

    The contribution of musculoskeletal disorders in multimorbidity: Implications for practice and policy

    Get PDF
    People frequently live for many years with multiple chronic conditions (multimorbidity) that impair health outcomes and are expensive to manage. Multimorbidity has been shown to reduce quality of life and increase mortality. People with multimorbidity also rely more heavily on health and care services and have poorer work outcomes. Musculoskeletal disorders (MSDs) are ubiquitous in multimorbidity because of their high prevalence, shared risk factors, and shared pathogenic processes amongst other long-term conditions. Additionally, these conditions significantly contribute to the total impact of multimorbidity, having been shown to reduce quality of life, increase work disability, and increase treatment burden and healthcare costs. For people living with multimorbidity, MSDs could impair the ability to cope and maintain health and independence, leading to precipitous physical and social decline. Recognition, by health professionals, policymakers, non-profit organisations, and research funders, of the impact of musculoskeletal health in multimorbidity is essential when planning support for people living with multimorbidity

    A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior

    Get PDF
    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF
    corecore