279 research outputs found

    Automatic Image Analysis and Recognition for Ultrasound Diagnosis and Treatment in Cardiac, Obstetrics and Radiology

    Get PDF
    Ultrasound image analysis and recognition techniques for improving workflow in diagnosis and treatment are introduced. Fully automatic techniques for applications of cardiac plane extraction, foetal weight measurement and ultrasound-CT image registration for liver surgery navigation are included. For standard plane extraction in 3D cardiac ultrasound, multiple cardiac landmarks defined in ultrasound cardiac examination guidelines are detected and localized by a Hough-forest-based detector, and by six standard cardiac planes, cardiac diagnosis is extracted following the guideline. For automatic foetal weight measurement, biparietal diameter (BPD), femur length (FL) and abdominal circumference (AC) are estimated by segmenting corresponding organs and regions from foetal ultrasound images. For ultrasound-CT liver image registration, initial alignment is obtained by localizing a corresponding portal vein branch from an intraoperative ultrasound and preoperative CT image pair. Then portal vein regions of the ultrasound-CT image pair are extracted by a machine learning method and are used for image registration

    Moving Object Detection and Tracking in Open-Air Test Bed

    Get PDF
    In mobile and ubiquitous computing environments, acquisition of contextual information about a user situation is necessary to provide useful services. Although the definition of user context may change according to the situation or the service used, contextual information about who, where, and when are considered to be essential. We have built a test bed with multiple sensors: floor pressure sensors, RFID (radio frequency identification) tag systems, and cameras, to carry out experiments to detect the positions of users and track their movement. The conventional background subtraction method by using cameras was used for moving object detection and tracking. In this paper, we propose knowledge application and parameter adaptation in the background subtraction method. The results are presented to show that the proposed method decreases the detection errors

    The Relation of Coffee Consumption to Serum Uric Acid in Japanese Men and Women Aged 49–76 Years

    Get PDF
    Objective. Few studies have suggested an inverse relation between coffee intake and serum concentrations of uric acid (UA), but none has addressed the relation in men and women separately. We examined the relation between coffee intake and serum UA levels in free-living middle-aged and elderly men and women in Fukuoka, Japan. Methods. Study subjects were derived from the baseline survey of a cohort study on lifestyle-related diseases, and included 11.662 men and women aged 49–76 years; excluded were those with medication for gout and hyperuricemia, use of diuretic drugs, and medical care for cancer or chronic kidney disease. Statistical adjustment was made for body mass index, alcohol use, hypertension, diabetes mellitus, and other factors. Results. There were inverse associations of coffee consumption with serum UA concentrations and hyperuricemia in men regardless of adjustment for covariates. Women showed a statistically significant, but weaker, inverse association between coffee and serum UA levels after allowance for the confounding factors. Conclusion. The findings add to evidence for a protective association between coffee intake and hyperuricemia

    Altered resting-state network connectivity in stroke patients with and without apraxia of speech

    Get PDF
    Motor speech disorders, including apraxia of speech (AOS), account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS), inferior frontal gyrus (IFG), and ventral premotor cortex (PM)) in a group of 32 left hemisphere stroke patients and 18 healthy, age-matched controls. Two expert clinicians rated severity of AOS, dysarthria and nonverbal oral apraxia of the patients. Fifteen individuals were categorized as AOS and 17 were AOS-absent. Comparison of connectivity in patients with and without AOS demonstrated that AOS patients had reduced connectivity between bilateral PM, and this reduction correlated with the severity of AOS impairment. In addition, AOS patients had negative connectivity between the left PM and right aINS and this effect decreased with increasing severity of non-verbal oral apraxia. These results highlight left PM involvement in AOS, begin to differentiate its neural mechanisms from those of other motor impairments following stroke, and help inform us of the neural mechanisms driving differences in speech motor planning and programming impairment following stroke

    Investigating the feasibility of using transcranial direct current stimulation to enhance fluency in people who stutter

    Get PDF
    Developmental stuttering is a disorder of speech fluency affecting 1% of the adult population. Long-term reductions in stuttering are difficult for adults to achieve with behavioural therapies. We investigated whether a single session of transcranial direct current stimulation (TDCS) could improve fluency in people who stutter (PWS). In separate sessions, either anodal TDCS (1 mA for 20 min) or sham stimulation was applied over the left inferior frontal cortex while PWS read sentences aloud. Fluency was induced during the stimulation period by using choral speech, that is, participants read in unison with another speaker. Stuttering frequency during sentence reading, paragraph reading and conversation was measured at baseline and at two outcome time points: immediately after the stimulation period and 1 h later. Stuttering was reduced significantly at both outcome time points for the sentence-reading task, presumably due to practice, but not during the paragraph reading or conversation tasks. None of the outcome measures were significantly modulated by anodal TDCS. Although the results of this single-session study showed no significant TDCS-induced improvements in fluency, there were some indications that further research is warranted. We discuss factors that we believe may have obscured the expected positive effects of TDCS on fluency, such as heterogeneity in stuttering severity for the sample and variations across sessions. Consideration of such factors may inform future studies aimed at determining the potential of TDCS in the treatment of developmental stuttering

    Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback.</p> <p>Results</p> <p>Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli.</p> <p>Conclusions</p> <p>Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.</p

    The Sensory Consequences of Speaking: Parametric Neural Cancellation during Speech in Auditory Cortex

    Get PDF
    When we speak, we provide ourselves with auditory speech input. Efficient monitoring of speech is often hypothesized to depend on matching the predicted sensory consequences from internal motor commands (forward model) with actual sensory feedback. In this paper we tested the forward model hypothesis using functional Magnetic Resonance Imaging. We administered an overt picture naming task in which we parametrically reduced the quality of verbal feedback by noise masking. Presentation of the same auditory input in the absence of overt speech served as listening control condition. Our results suggest that a match between predicted and actual sensory feedback results in inhibition of cancellation of auditory activity because speaking with normal unmasked feedback reduced activity in the auditory cortex compared to listening control conditions. Moreover, during self-generated speech, activation in auditory cortex increased as the feedback quality of the self-generated speech decreased. We conclude that during speaking early auditory cortex is involved in matching external signals with an internally generated model or prediction of sensory consequences, the locus of which may reside in auditory or higher order brain areas. Matching at early auditory cortex may provide a very sensitive monitoring mechanism that highlights speech production errors at very early levels of processing and may efficiently determine the self-agency of speech input

    Cigarette smoking, genetic polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study

    Get PDF
    Background: It is uncertain whether smoking is related to colorectal cancer risk. Cytochrome P-450 CYP1A1, glutathione-S-transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1) are important enzymes in the metabolism of tobacco carcinogens, and functional genetic polymorphisms are known for these enzymes. We investigated the relation of cigarette smoking and related genetic polymorphisms to colorectal cancer risk, with special reference to the interaction between smoking and genetic polymorphism. Methods: We used data from the Fukuoka Colorectal Cancer Study, a population-based case-control study, including 685 cases and 778 controls who gave informed consent to genetic analysis. Interview was conducted to assess lifestyle factors, and DNA was extracted from buffy coat. Results: In comparison with lifelong nonsmokers, the odds ratios (OR) of colorectal cancer for &lt;400, 400-799 and ≥800 cigarette-years were 0.65 (95 % confidence interval [CI], 0.45-0.89), 1.16 (0.83-1.62) and 1.14 (0.73-1.77), respectively. A decreased risk associated with light smoking was observed only for colon cancer, and rectal cancer showed an increased risk among those with ≥400 cigarette-years (OR 1.60, 95 % CI 1.04-2.45). None of the polymorphisms under study was singly associated with colorectal cancer risk. Of the gene-gene interactions studied, the composite genotype of CYP1A1*2A or CYP1A1*2C and GSTT1 polymorphisms was associated with a decreased risk of colorecta

    Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    Get PDF
    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (~150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands

    Extracellular and Luminal pH Regulation by Vacuolar H⁺-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes

    Get PDF
    Plasma membrane vacuolar H+ -ATPase (pm-V-ATPase) activity of tumor cells is a major factor in control of cytoplasmic and extracellular pH and metastatic potential, but the isoforms involved and the factors governing plasma membrane recruitment remain uncertain. Here, we examined expression, distribution and activity of V- ATPase isoforms in invasive prostate adenocarcinoma (PC-3) cells. Isoforms 1 and 3 were the most highly expressed forms of membrane subunit a, with a1 and a3 the dominant plasma membrane isoforms. Correlation between pm-V-ATPase activity and invasiveness was limited, but RNAi knockdown of either a isoform did slow cell proliferation and inhibit invasion in vitro. Isoform a1 was recruited to the cell surface from the early endosome/recycling complex pathway, its knockdown arresting transferrin receptor (TfR) recycling. Isoform a3 was associated with the late endosomal/lysosomal compartment. Both a isoforms associated with accessory protein Ac45, knockdown of which stalled transit of a1 and Tf-TfR, decreased proton efflux and reduced cell growth and invasiveness, this latter effect at least partly due to decreased delivery of the membrane-bound matrix metalloproteinase MMP-14 to the plasma membrane. These data indicate that in prostatic carcinoma cells, a1 and a3 isoform populations predominate in different compartments where they maintain different luminal pH. Ac45 plays a central role in navigating the V-ATPase to the plasma membrane, and hence is an important factor in expression of the invasive phenotype
    corecore